精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的顶点坐标分别为A43),B31),C12),△A1B1C1与△ABC关于原点对称.

1)写出A1B1C1的坐标;

2)在所给的平面直角坐标系中画出△A1B1C1

3)若点A43)与点Ma2b4)关于原点对称,求关于x的方程的解.

【答案】1A1B1C1的坐标为(﹣4,﹣3)、(﹣3,﹣1)、(﹣1,﹣2);(2)如图:即为△A1B1C1.见解析;(3)关于x的方程的解为﹣

【解析】

1)根据关于原点对称的点的坐标特点即可求解;
2)根据(1)所得坐标即可画出图形;
3)根据关于原点对称的点的坐标特点求出ab的值,进一步解方程即可.

1)根据题意,得

A1(﹣4,﹣3),B1(﹣3,﹣1),C1(﹣1,﹣2),

答:A1B1C1的坐标为(﹣4,﹣3)、(﹣3,﹣1)、(﹣1,﹣2

2)如图:即为△A1B1C1

3a2=﹣4b4=﹣3

解得a=﹣2b1

所以方程为:x2

整理,得

6x27x50

解得x1=﹣x2

答:关于x的方程的解为﹣

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若一次函数ykx+m的图象经过二次函数yax2+bx+c的顶点,我们则称这两个函数为丘比特函数组

1)请判断一次函数y=﹣3x+5和二次函数yx24x+5是否为丘比特函数组,并说明理由.

2)若一次函数yx+2和二次函数yax2+bx+c丘比特函数组,已知二次函数yax2+bx+c顶点在二次函数y2x23x4图象上并且二次函数yax2+bx+c经过一次函数yx+2y轴的交点,求二次函数yax2+bx+c的解析式;

3)当﹣3≤x≤1时,二次函数yx22x4的最小值为a,若丘比特函数组中的一次函数y2x+3和二次函数yax2+bx+cbc为参数)相交于PQ两点请问PQ的长度为定值吗?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的一边OAx轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若COD的面积为20,则k的值等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x1≤x≤90)天的售价与销售量的相关信息如下表:

时间x(天)

1≤x50

50≤x≤90

售价(元/件)

x40

90

每天销量(件)

2002x

已知该商品的进价为每件30元,设销售该商品的每天利润为y[

1)求出yx的函数关系式;

2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?

3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+ca0)的对称轴是x1,现给出下列4个结论:abc02ab04a+2b+c0b24ac0,其中错误的结论有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点Ax轴的负半轴上,点B的坐标为(﹣2,﹣4),抛物线yax2+bx的对称轴为x=﹣5,该抛物线经过点AB,点EAB与对称轴x=﹣5的交点.

1)如图1,点P为直线AB下方的抛物线上的任意一点,在对称轴x=﹣5上有一动点M,当△ABP的面积最大时,求|PMOM|的最大值以及点P的坐标.

2)如图2,把△ABO沿射线BA方向平移,得到△CDF,其中点CDF分别是点ABO的对应点,且点F与点O不重合,平移过程中,是否存在这样的点F,使得以点AEF为顶点的三角形为等腰三角形?若存在,直接写出点F的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙OAB=AC=10BC=12,点E是弧BC的中点.

(1)过点EBC的平行线交AB的延长线于点D,求证:DE是⊙O的切线.

(2)F是弧AC的中点,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN

求证:(1DE是⊙O的切线;

2ME2MDMN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:

①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,

其中,正确的个数有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案