精英家教网 > 初中数学 > 题目详情

【题目】函数y=(m﹣1)x2m2﹣3是反比例函数,则m的值为

【答案】-1
【解析】解:∵函数y=(m﹣1)x2m2﹣3是反比例函数,
∴2m2﹣3=﹣1且m﹣1≠0.
整理,得
2(m+1)(m﹣1)=0且m﹣1≠0.
解得 m=﹣1.
故答案是:﹣1.
【考点精析】本题主要考查了反比例函数的概念的相关知识点,需要掌握形如y=k/x(k为常数,k≠0)的函数称为反比例函数.自变量x的取值范围是x不等于0的一切实数,函数的取值范围也是一切非零实数才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是(  )

A. (1,3) B. (1,﹣3) C. (﹣1,3) D. (﹣1,﹣3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).

(1)图2中所缺少的百分数是

(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是 ____ (填写年龄段);

(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是 ___

(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有 ____名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD中,点P是对角线AC上的任意一点(不包括端点),以P为圆心的圆与AB相切,则AD与⊙P的位置关系是(  )

A. 相离 B. 相切 C. 相交 D. 不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出

某商店经销《超能陆战队》超萌“小白”(图1)玩具,“小白”玩具每个进价60元.为进行促销,商店制定如下“优惠”方案:如果一次销售数量不超过10个,则销售单价为100元/个;如果一次销售数量超过10个,每增加一个,所有“小白”玩具销售单价降低1元/个,但单价不得低于80元/个.一次销售“小白”玩具的单价y(元/个)与销售数量x(个)之间的函数关系如图2所示.

(1)求m的值并解释射线BC所表示的实际意义;

(2)写出该店当一次销售x个时,所获利润w(元)与x(个)之间的函数关系式;

(3)店长经过一段时间的销售发现:即并不是销量越大利润越大(比如,卖25个赚的钱反而比卖30个赚的钱多).为了不出现这种现象,在其他条件不变的情况下,店长应把原来的最低单价80(元/个)至少提高到多少元/个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,FAB的中点,DEAB交于点G,EFAC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:

①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD

其中正确结论的为______(请将所有正确的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x( )时,代数式32-x23+x的值相等

A. 1 B. 2 C. -2 D. 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数过(﹣2,4),(﹣4,4)两点.

(1)求二次函数的解析式;

(2)将沿x轴翻折,再向右平移2个单位,得到抛物线,直线y=m(m>0)交于M、N两点,求线段MN的长度(用含m的代数式表示);

(3)在(2)的条件下,交于A、B两点,如果直线y=m与的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有 (写出所有正确结论的序号)

①△CMP∽△BPA;

②四边形AMCB的面积最大值为10;

③当P为BC中点时,AE为线段NP的中垂线;

④线段AM的最小值为

⑤当△ABP≌△ADN时,BP=

查看答案和解析>>

同步练习册答案