精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB900AC10,点E在边CB上,CE,点D在边AB的中点上,CDAE,垂足为F,则AB的长=__

【答案】

【解析】

BC的中点G,连接DG,根据中位线的性质可得:DGACDG=,然后利用勾股定理即可求出AE,再利用△ACE面积的两种求法求出CF,利用勾股定理即可求出EF,然后利用相似三角形的判定即可证出:△DCG∽△ECF,列出比例式即可求出DC,最后根据直角三角形斜边上的中线等于斜边的一半即可求出AB的长.

解:取BC的中点G,连接DG

∵点D在边AB的中点

DG是△ABC的中位线

DGACDG=

∴∠DGC=90°

根据勾股定理:AE=

SACE=

解得:CF=6

根据勾股定理:EF=

∵∠DCG=ECF,∠DGC=EFC=90°

∴△DCG∽△ECF

解得:DC=

RtABC中,AB=2CD=

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点COA都不重合),过点AC分别向直线BM作垂线段,垂足分别为EF,连接OEOF

1)①依据题意补全图形;

②猜想OEOF的数量关系为_________________.

2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.

小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:

想法1:由已知条件和菱形对角线互相平分,可以构造与OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;

想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组OABEAB,再依据直角三角形斜边中线的性质,菱形四边相等,可以构造一对以OEOF为对应边的全等三角形,即可证明猜想.

……

请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).

3)当∠ADC=120°时,请直接写出线段CFAEEF之间的数量关系是_________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条,其中.然后在纸条上任意画一条截线段,将纸片沿折叠,交于点,得到.如图2所示:

探究:

1)若______°;

2)改变折痕位置,始终是______三角形,请说明理由;

应用:

3)爱动脑筋的小明在研究的面积时,发现边上的高始终是个不变的值.根据这一发现,他很快研究出的面积最小值为,此时的大小可以为______°;

4)小明继续动手操作,发现了面积的最大值.请你求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。

[来

根据以上信息,解答下列问题:

(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出关于的函数表达式;

(2)请你帮助小明计算并选择哪个出游方案合算。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系XOY中,一次函数ykxk的图象经过A22),与x轴、y轴分别交于点C、点B.

1)观察图像,直接写出使y≥0x的取值范围;

2)求一次函数的解析式;

3)若点Px轴上一点,且满足△PAB的面积是6,请求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列条件:①∠A=45°,AB=12,AC=15,A′=45°,A′B′=16,A′C′=20;②∠A=47°,AB=1.5,AC=2,B′=47°,A′B′=2.8,B′C′=2.1;③∠A=47°,AB=2,AC=3,B′=47°,A′B′=4,B′C′=6,其中能判定ABCA′B′C′相似的有 ( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BCAC,过点C作直线CDAB于点D,点EAB上一点,直线CE交⊙O于点F,连接BF与直线CD延长线交于点G.求证:BC2BG·BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如图所示,下列结论:

⑥当时,的增大而增大.

其中正确的说法有________(写出正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形(顶点是网格线交点的三角形)的顶点的坐标分别是

(1)请在图中的网格平面内建立平面直角坐标系;

(2)请画出关于轴对称的

(3)请在轴上求作一点,使的周长最小,并写出点的坐标.

查看答案和解析>>

同步练习册答案