【题目】如图,△ABC的周长为16,D, E,F分别为AB, BC,AC的中点,M,N,P分别为DE, EF,DF的中点,则△MNP的周长为____;如果△ABC,△DEF,△MNP分别为第1个,第2个,第3个三角形,按照上述方法继续做三角形,那么第n个三角形的周长是___.
【答案】4
【解析】
利用中位线定理求出EF、DE、DF与AB、AC、BC的长度关系,可得△EFG的周长是△ABC周长的一半,△MNP的周长是△DEF的周长的一半,以此类推,即可求得第n个三角形的周长.
解:如图,△ABC的周长为16,D、E、F分别为AB、BC、AC的中点,
∴EF、DE、DF为三角形中位线,
∴EF=AB,DE=AC,FD=BC
∴EF+DE+DF=(BC+AC+AB),即△DEF的周长是△ABC周长的一半
同理,△MNP的周长是△DEF的周长的一半,即△MNP的周长为16×()2=4.
以此类推,第n个小三角形的周长是第一个三角形周长的16×()n-1=.
故答案是:.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.
(1)求证:AB是⊙O的切线.
(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.
(3)(3分)在(2)的条件下,设⊙O的半径为3,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(m,n)在第一象限内,m,n均为整数,且满足.
(1)求点A的坐标;
(2)将线段OA向下平移a(a>0)个单位后得到线段,过点作轴于点B,若,求a的值;
(3)过点A向x轴作垂线,垂足为点C,点M从O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点C出发,以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,当时,判断四边形AMON的面积的值是否变化?若不变,求出其值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,A(﹣3,﹣2)、B(﹣1,﹣4)
(1)直接写出:S△OAB= ;
(2)延长AB交y轴于P点,求P点坐标;
(3)Q点在y轴上,以A、B、O、Q为顶点的四边形面积为6,求Q点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).
(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为 ;
(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为 ;
(3)在(2)中的旋转过程中,线段OA扫过的图形的面积 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上两点,经过点A,C,B的抛物线的一部分C1与经过点A,D,B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0, ),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点:
(1)求A、B两点的坐标;
(2)求经过点A,C,B的抛物线C1的函数表达式.
(3)探究“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC面积的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx+c的图象过点A(﹣3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是﹣2.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com