精英家教网 > 初中数学 > 题目详情

【题目】四边形ABCD各顶点的坐标分别为A(0,1)、B(5,1)、C(7,3)、D(2,5).

(1)在如图所示的平面直角坐标系画出该四边形;

(2)四边形ABCD的面积是________;

(3)四边形ABCD内(边界点除外)一共有_____个整点(即横坐标和纵坐标都是整数的点).

【答案】(1)详见解析;(2)17;(3)13.

【解析】

(1)根据题意描点连线即可;

(2)如图利用割补法求解,即S四边形ABCD=S四边形AEFG﹣SBCE﹣SCDF﹣SADG

(3)根据整点的概念可得.

(1)如图所示,四边形ABCD即为所求;

(2)如图

由图可得:S四边形ABCD=S四边形AEFG﹣SBCE﹣SCDF﹣SADG=4×7﹣×2×2﹣×2×5﹣×2×4=17,

即:四边形ABCD的面积为17;

故答案为17;

(3)由图可知,四边形ABCD内(边界点除外)的整点有13个,

故答案为:13.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把一副三角板如图放置 其中∠ACB=DEC=90A=45D=30斜边 AB=4CD=5把三角板DCE绕点C顺时针旋转15得到三角形D1CE (如图二)此时ABCD1交于点O,则线段AD1的长度为( )

A. B. C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.
(1)随机从箱子里取出1个球,则取出黄球的概率是多少?
(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举行全体学生汉字听写比赛,每位学生听写汉字39个.现随机抽取了部分学生的听写结果,绘制成如下的图表:

组别

正确字数x

人数

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

M

E

32≤x<40

n

根据以上信息完成下列问题:

(1)统计表中的m=   ,n=   ,并补全条形统计图.

(2)扇形统计图中“C所对应的圆心角的度数是   

(3)已知该校共有900名学生,如果听写正确的字的个数少于16个定为不合格,请你估计该校本次听写比赛不合格的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个正方体,六个面上分别写有六个连续的整数(如图所示),且每两个相对面上的数字和相等,本图所能看到的三个面所写的数字分别是:,问:与它们相对的三个面的数字各是多少?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 分别交x轴、y轴于A、B两点,线段AB的垂直平分线分别交x轴、y轴于C、D两点.

(1)求点C的坐标;
(2)求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2012年4月23日是第17个世界读书日,《教育导报》记者就四川省农村中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整).设x表示阅读书籍的数量(x为正整数,单位:本).其中A:1≤x≤3; B:4≤x≤6; C:7≤x≤9;D:x≥10.请你根据两幅图提供的信息解答下列问题:

(1)本次共调查了多少名教师?
(2)补全条形统计图;
(3)计算扇形统计图中扇形D的圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h.

(1) 求v的值;

(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,N∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME

正方形ABCD中,∠B=∠BCD=90°AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面请你完成余下的证明过程)

2)若将(1)中的正方形ABCD”改为正三角形ABC”(如图2,N∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

3)若将(1)中的正方形ABCD”改为边形ABCD…X”,请你作出猜想:当∠AMN=°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

1 2

查看答案和解析>>

同步练习册答案