【题目】已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为 的等腰直角三角形DEF的费马点,则PD+PE+PF= .
科目:初中数学 来源: 题型:
【题目】某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:
请根据图中信息,解答下列问题
(1)该调查的样本容量为 , a=%,b=%,“常常”对应扇形的圆心角为°
(2)请你补全条形统计图;
(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是( )
A.50°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点
(1)已知点A的坐标是(2,3),求k的值及C点的坐标;
(2)若△APO的面积为2,求点D到直线AC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1 (要求A与A1,B与B1,C与C1相对应);
(2)求△ABC的面积;
(3)在直线l上找一点P,使得△PAC的周长最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BO、CO分别平分∠ABC和∠ACB.计算:
(1)若∠A=60°,求∠BOC的度数;
(2)若∠A=100°,则∠BOC的度数是多少?
(3)若∠A=120°,则∠BOC的度数又是多少?
(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com