13£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2$+2x+\frac{k-1}{2}=0$ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬kΪÕýÕûÊý£®
£¨1£©ÇókµÄÖµ£»
£¨2£©µ±´Ë·½³ÌÓÐÒ»¸ùΪÁãʱ£¬Ö±Ïßy=x+2Óë¹ØÓÚxµÄ¶þ´Îº¯Êýy=x2+2x$+\frac{k-1}{2}$µÄͼÏó½»ÓÚA¡¢BÁ½µã£¨AÔÚBµÄ×ó²à£©£¬ÈôMÊÇÏß¶ÎABÉϵÄÒ»¸ö¶¯µã£¬¹ýµãM×÷MN¡ÍxÖᣬ½»¶þ´Îº¯ÊýµÄͼÏóÓÚµãN£¬ÇóÏß¶ÎMNµÄ×î´óÖµ¼°´ËʱµãMµÄ×ø±ê£»
£¨3£©½«£¨2£©ÖеĶþ´Îº¯ÊýͼÏóxÖáÏ·½µÄ²¿·ÖÑØxÖá·­ÕÛµ½xÖáÉÏ·½£¬Í¼ÏóµÄÆäÓಿ·Ö±£³Ö²»±ä£¬·­ÕÛºóµÄͼÏóÓëԭͼÏóxÖáÉÏ·½µÄ²¿·Ö×é³ÉÒ»¸ö¡°W¡±ÐÎ×´µÄÐÂͼÏó£¬ÈôÖ±Ïßy=$\frac{1}{2}x$+bÓë¸ÃÐÂͼÏóÇ¡ºÃÓÐÈý¸ö¹«¹²µã£¬ÇëÇó³ö´ËʱbµÄÖµ£®
£¨4£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôPÊÇÆ½ÃæÉϵÄÒ»µã£¬ÒÔM¡¢N¡¢A¡¢PΪ¶¥µãµÄËıßÐÎΪÁâÐΣ¬ÇëÖ±½Óд³ö´ËʱPµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾ÝÒ»Ôª¶þ´Î·½³Ì¸ùµÄÅбðʽ£¬È·¶¨³ökµÄ·¶Î§£¬½áºÏkΪÕýÕûÊý£¬¼´¿ÉÇó½â£»
£¨2£©¸ù¾ÝÒ»Ôª¶þ´Î·½³ÌµÄÒ»¸ö¸ùΪ0£¬È·¶¨³ök£¬ÁªÁ¢$\left\{\begin{array}{l}{y={x}^{2}+2x}\\{y=x+2}\end{array}\right.$È·¶¨³ö½»µã×ø±ê£¬×îºó½¨Á¢MNÓëmµÄº¯Êý¹ØÏµÊ½£¬¼´¿É£»
£¨3£©¸ù¾ÝͼÏóµÄÌØµã£¬·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬·Ö±ðÇó³öbµÄÖµ¼´¿É£»
£¨4£©¸ù¾ÝµãA£¬M£¬NµÄ×ø±ê£¬È·¶¨³öAM£¬AN£¬MN£¬Åжϳö²»´æÔÚÂú×ãÌõ¼þµÄÁâÐΣ®

½â´ð ½â£º£¨1£©¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2$+2x+\frac{k-1}{2}=0$ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬
¡à¡÷=b2-4ac=4-4¡Á$\frac{k-1}{2}$£¾0£¬k-1£¼2£¬
½âµÃk£¼3£¬
¡ßkΪÕýÕûÊý£¬
¡àk=1£¬2£»
£¨2£©Èçͼ1£¬

µ±x=0ʱ£¬$\frac{k-1}{2}$=0£®½âµÃk=1£®
µ±k=1ʱ£¬¶þ´Îº¯ÊýΪy=x2+2x£®
ÁªÁ¢Å×ÎïÏßÓëÖ±Ïߣ¬µÃ
$\left\{\begin{array}{l}{y={x}^{2}+2x}\\{y=x+2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$£¬¼´A£¨-2£¬0£©£¬B£¨1£¬3£©£®
ÉèM£¨m£¬m+2£©£¬ÆäÖÐ-2£¼m£¼1£¬N£¨m£¬m2+2m£©£¬
MN=m+2-£¨m2+2m£©=-m2-m+2=-£¨m+$\frac{1}{2}$£©2+$\frac{9}{4}$£¬
µ±m=-$\frac{1}{2}$ʱ£¬MN×î´ó=$\frac{9}{4}$£¬´ËʱM£¨-$\frac{1}{2}$£¬$\frac{3}{2}$£©£»
£¨3£©¢Ùµ±Ö±Ïßy=$\frac{1}{2}$x+b¹ýAµãʱ£¬Ö±Ïßy=$\frac{1}{2}x$+bÓë¸ÃÐÂͼÏóÇ¡ºÃÓÐÈý¸ö¹«¹²µã£¬Èçͼ2£¬

½«Aµã×ø±ê´úÈ룬µÃ$\frac{1}{2}$¡Á£¨-2£©+b=0£®
½âµÃb=1£»
¢Úµ±y=$\frac{1}{2}$x+bÓëÐÂͼÏóµÄ·â±Õ²¿·ÖÓÐÒ»¸ö¹«¹²µãʱ£¬Ö±ÏßÓëÐÂͼÏóÓÐ3¸ö¹«¹²µã£¬
ÓÉÓÚÐÂͼÏóµÄ·â±Õ²¿·ÖÓëԭͼÏóµÄ·â±Õ²¿·Ö¹ØÓÚxÖá¶Ô³Æ£¬ËùÒÔÆä½âÎöʽΪy=-x2-2x
¡à$\left\{\begin{array}{l}{y=\frac{1}{2}x+b}\\{y=-{x}^{2}-2x}\end{array}\right.$ÓÐÒ»×é½â
µÃ-x2-$\frac{5}{2}$x-b=0ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬
£¨-$\frac{5}{2}$£©2-4¡Á£¨-1£©¡Á£¨-b£©=0£¬
½âµÃb=$\frac{25}{16}$£¬
×ÛÉÏËùÊö£ºÖ±Ïßy=$\frac{1}{2}x$+bÓë¸ÃÐÂͼÏóÇ¡ºÃÓÐÈý¸ö¹«¹²µã£¬´ËʱbµÄֵΪ1»ò$\frac{25}{16}$£»
£¨4£©£¬ÓÉ£¨2£©ÓУ¬A£¨-2£¬0£©£¬M£¨-$\frac{1}{2}$£¬$\frac{3}{2}$£©£¬N£¨-$\frac{1}{2}$£¬-$\frac{3}{4}$£©£¬
¡àMN=$\frac{9}{4}$£¬AM=$\frac{3\sqrt{2}}{2}$£¬AN=$\frac{3\sqrt{5}}{4}$£¬
¡àMN£¬AM£¬ANÖÐûÓÐÏàµÈµÄÏ߶Σ¬
¡àÆ½ÃæÄÚÈÝ£¬²»´æÔÚµãP£¬Ê¹ÒÔM¡¢N¡¢A¡¢PΪ¶¥µãµÄËıßÐÎΪÁâÐΣ®

µãÆÀ ±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷Òª¿¼²éÁ˸ùµÄÅбðʽµÄÓ¦Ó㬻¹¿¼²éÁËÁ½º¯ÊýͼÏóµÄ½»µãÎÊÌ⣬ÄѵãÔÚÓÚ£¨3£©Çó³öÖ±ÏßÓëÅ×ÎïÏßÓÐ3¸ö½»µãµÄÇé¿ö£¬¸ù¾ÝÌâÒâ·ÖÀàÌÖÂÛ£¬²¢ÇÒ×÷³öͼÐθüÀûÓÚ½â¾öÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{a+2}{a+3}$¡Â$\frac{{a}^{2}-4}{{a}^{2}+3a}$-1£¬ÆäÖÐa=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚ¶«Î÷·½ÏòµÄº£°¶ÏßABÉÏ£¬ÓÐC¡¢DÁ½ËÒѲÂß´¬£¬ÏÖ¾ùÊÕµ½¹ÊÕÏ´¬FµÄÇó¾ÈÐźţ¬ÒÑÖªC¡¢DÁ½´¬Ïà¾à50£¨$\sqrt{2}$+$\sqrt{6}$£©º£À´¬FÔÚ´¬CµÄ±±Æ«¶«30¡ã·½ÏòÉÏ£¬´¬FÔÚ´¬DµÄÎ÷±±·½ÏòÉÏ£¬º£°¶ÏßABÉÏÓÐÒ»¹Û²âµãE£¬²âµÃ´¬FÕýºÃÔÚ¹Û²âµãEµÄ±±Æ«Î÷15¡ã·½ÏòÉÏ£®
£¨1£©·Ö±ðÇó³öFÓëC£¬FÓëDÖ®¼äµÄ¾àÀëPCºÍFD£¨Èç¹ûÔËËã½á¹ûÓиùºÅ£¬Çë±£Áô¸ùºÅ£©£®
£¨2£©ÒÑÖª¾à¹Û²âµãE´¦100$\sqrt{3}$Íòº£ÀﷶΧÄÚÓаµ½¸£¬ÈôѲÂß´¬CÑØÖ±ÏßCFÈ¥Íä¾È´¬F£¬ÔÚÈ¥Óª¾ÈµÄ;ÖÐÓÐÎÞ´¥°µ½¸Î£ÏÕ£¿£¨²Î¿¼Êý¾Ý£º$\sqrt{2}¡Ö$1.41£¬$\sqrt{3}$£¬1.73£¬$\sqrt{6}$¡Ö2.45£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÊýѧµÄѧϰÖУ¬ÎÒÃÇҪѧ»á×ܽᣬ²»¶ÏµØ¹éÄÉ£¬Ë¼¿¼ºÍÔËÓã¬ÕâÑù²ÅÄÜÌá¸ßÎÒÃǽâ¾öÎÊÌâµÄÄÜÁ¦£¬ÏÂÃæÕâ¸öÎÊÌâ´ó¼ÒÒ»¶¨ËÆÔøÏàʶ£º
£¨1£©±È½Ï´óС£º¢Ù2+3£¾2$\sqrt{2¡Á3}$£»¢Ú3+$\frac{1}{4}$£¾2$\sqrt{3¡Á\frac{1}{4}}$£»¢Û8+8= 2$\sqrt{8¡Á8}$£»
£¨2£©Í¨¹ýÉÏÃæÈý¸ö¼ÆË㣬ÎÒÃÇ¿ÉÒÔ³õ²½¶ÔÈÎÒâµÄ·Ç¸ºÊµÊýa£¬b×ö³ö²ÂÏ룺a+b¡Ý2$\sqrt{ab}$£»
£¨3£©Ë¼¿¼ÑéÖ¤£ºÈçͼ1£¬¡÷ABCÖУ¬¡ÏACB=90¡ã£¬CD¡ÍAB£¬´¹×ãΪD£¬COΪAB±ßÉϵÄÖÐÏߣ¬AD=2a£¬DB=2b£¬ÊÔ¸ù¾ÝͼÐÎÖ¤Ã÷ÉÏÊö²»µÈʽa+b¡Ý2$\sqrt{ab}$£¬²¢Ö¸³öµÈºÅ³ÉÁ¢µÄÌõ¼þ£®
£¨4£©Ì½Ë÷Ó¦ÓãºÈçͼ2ÓÐÒ»¸öµÈÑüÌÝÐι¤¼þ£¨ºñ¶È²»¼Æ£©£¬ÆäÃæ»ýΪ7200cm2£¬ÏÖÔÚÒªÓÃϸ°ü×°´øÈçͼÄÇÑù°üÔú£¨ÐéÏß±íʾ°ü×°´ø£¬ËĵãΪËıßÖе㣩£¬ÔòÖÁÉÙÐèÒª°ü×°´øµÄ³¤¶ÈΪ240$\sqrt{2}$cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚ¡÷EFCÖУ¬µãAÊÇEFÉÏÒ»µã£¬ÇÒAD¡ÎCF£¬AB¡ÎCE£¬¡ÏEAD=¡ÏBAF£®
£¨1£©ÇóÖ¤£ºCE=CF£»
£¨2£©Èç¹ûCE=6cm£¬Çó?ABCDµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{2x+5¡Ü3£¨x+2£©}\\{x-1£¼\frac{x}{3}}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Õý·½ÐÎOABCµÄ¶¥µãA×ø±êΪ£¨2£¬1£©£¬µãCÔÚ·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏóÉÏ£¬ÔòkµÄֵΪ£¨¡¡¡¡£©
A£®-$\sqrt{5}$B£®-2C£®2D£®$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ò»°ãÇé¿öÏ£¬Ò»ÔªÒ»´Î·½³ÌÖ»ÓÐ1¸ö½â£¬Ò»ÔªÒ»´Î²»µÈʽµÄ½â¿ÉÒÔÓÐÎÞÊý¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸