精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOB30°,点MN分别在边OAOB上,且OMON6,点PQ分别在边OBOA上,则MP+PQ+QN的最小值是_____

【答案】

【解析】

M关于OB的对称点M,作N关于OA的对称点N,连接MN,即为MP+PQ+QN的最小值;证出ONN为等边三角形,OMM为等边三角形,得出NOM90°,由勾股定理求出MN即可.

解:作M关于OB的对称点M,作N关于OA的对称点N,如图所示:

连接MN,即为MP+PQ+QN的最小值.

根据轴对称的定义可知:NOQMOB30°ONN60°

∴△ONN为等边三角形,OMM为等边三角形,

∴∠NOM90°OMOMONON6

Rt△MON中,

MN

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:

甲步行的速度为60米/分;

乙走完全程用了32分钟;

乙用16分钟追上甲;

乙到达终点时,甲离终点还有300米

其中正确的结论有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠B=∠C,点DBC上,点EAC上,连接DE∠ADE=∠AED

(1)∠B=70°∠ADE=80°,求∠BAD∠CDE

(2)当点DBC(点B,C除外)边上运动时,且点EAC边上,猜想∠BAD∠CDE的数量关系是,并证明你的猜想.

(3)当点DBC(点B,C除外)边上运动时,且点EAC边上,若∠BAD=25°,求∠CDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值小于0,那么下列结论中正确的是( )
A.m﹣1>0
B.m﹣1<0
C.m﹣1=0
D.m﹣1与0的大小关系不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的一次函数y=(a+1x+a4)的图象不经过第二象限,且关于x的分式方程有整数解,那么整数a值不可能是(

A. 0B. 1C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(2)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩(10分制)如下表(单位:分):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9


(1)甲队成绩的中位数是分,乙队成绩的众数是分;
(2)计算乙队成绩的平均数和方差;
(3)已知甲队成绩的方差是1.4分2 , 则成绩较为整齐的是队.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20185月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.

1)冲锋舟从A地到C地的时间为 分钟,冲锋舟在静水中的速度为 千米/分,水流的速度为 千米/分.

2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为ykx+b,若冲锋舟在距离A 千米处与救生艇第二次相遇,求kb的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.

(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中, ,点DBC所在的直线上,点E在射线AC上,且,连接DE

(1)如图①,若 ,求的度数;

(2)如图②,若 ,求的度数;

(3)当点D在直线BC上(不与点BC重合)运动时,试探究的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案