精英家教网 > 初中数学 > 题目详情

【题目】如图,已知长方形ABCD中AB = 8cm,BC = 10cm,在边CD上取一点E,将ADE折叠,使点D恰好落在BC边上的点F,则CF的长为( )

A. 2cm B. 3cm C. 4cm D. 5cm

【答案】C

【解析】由将△ADE折叠使点D恰好落在BC边上的点F可得RtADERtAFE所以AF=10cmRtABF中由勾股定理得AB2+BF2=AF2已知ABAF的长可求出BF的长进而得到结论

∵四边形ABCD是矩形AD=BC=10cmCD=AB=8cm根据题意得RtADERtAFEAF=10cmRtABF中由勾股定理得AB2+BF2=AF282+BF2=102BF=6cmCF=BCBF=106=4cm).

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某城市自来水收费实行阶梯水价,收费标准如下表所示:

月用水量

不超过12吨的部分

超过12吨的部分且

不超过18吨的部分

超过18吨的部分

收费标准

2元/吨

2.5元/吨

3元/吨

(1)某用户四月份用水量为16吨,需交水费为多少元?

(2)某用户五月份交水费50元,所用水量为多少吨?

(3)某用户六月份用水量为a吨,需要交水费为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E分别是AB,AC的中点,连接DE并延长到点F,使EF=ED,连接CF.

(1)四边形DBCF是平行四边形吗?说明理由;

(2)DE与BC有什么样的位置关系和数量关系?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】①下午 2 点 10 分时,钟表的时针和分针所成锐角是________

②如图,射线 OC,OD 在∠AOB 的内部,射线 OM,ON 分别平分∠AOD,∠BOC, 且∠BON=50°,∠AOM=40°,∠COD=30°,则∠AOB 的度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(

A. |a|=﹣a,则 a 定是负数

B. 单项式 x3y2z 的系数为 1,次数是 6

C. AP=BP,则点 P 是线段 AB 的中点

D. 若∠AOC=AOB,则射线 OC 是∠AOB 的平分线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)5﹣(﹣3)+(﹣2)﹣1;

(2)2×(﹣)÷(﹣3);

(3)﹣5×[1﹣(0.5+ )÷];

(4)20×(﹣)+4×(﹣)+2×(﹣);

(5)﹣14-()÷(﹣)×[﹣2﹣(﹣3)2]﹣(﹣0.52).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在直线AB上的一点O,以O为端点依次作射线OE,OC,OD,使∠EOD=90°,∠COB=60°

(1)如图1∠EOD的一边OD在射线OB上时,求∠COE的度数

(2)如图2∠EOD绕着点O逆时针旋转到OC平分∠BOE时,求∠COD的度数;

(3)当∠EOD绕着点O逆时针旋转,且O°<∠AOE<90°(但≠60°)时,试猜想∠AOE∠COD有怎样的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列多面体,并把下表补充完整.

名称

三棱柱

四棱柱

五棱柱

六棱柱

图形

顶点数

6

10

12

棱数

9

12

面数

5

8

观察上表中的结果,你能发现之间有什么关系吗?请写出关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:菱形的两条对角线互相垂直. 已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.
求证:AC⊥BD.
以下是排乱的证明过程:
①又BO=DO;
②∴AO⊥BD,即AC⊥BD;
③∵四边形ABCD是菱形;
④∴AB=AD.
证明步骤正确的顺序是(

A.③→②→①→④
B.③→④→①→②
C.①→②→④→③
D.①→④→③→②

查看答案和解析>>

同步练习册答案