分析 (1)通过SAS可得△ABE≌△ACD.
(2)根据全等三角形的性质推出∠ABE=∠CAD,再通过角之间的转化即可求解∠BFD的度数.
解答 解:(1)∵△ABC为等边三角形,
∴AB=AC,AE=CD,∠BAE=∠C=60°,
在△ABE和△ACD中,
$\left\{\begin{array}{l}{AE=DC}\\{∠BAE=∠C}\\{AB=AC}\end{array}\right.$,
∴△ABE≌△CAD(SAS),
∴AD=BE.
(2)∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.
点评 本题主要考查了等边三角形的性质以及全等三角形的判定及性质问题,解决本题的关键是证明△ABE≌△CAD.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com