【题目】如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)请直接写出点B关于点A对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.
【答案】
(1)解:点B关于点A对称的点的坐标为(2,6)
(2)解:所作图形如图所示:
,
点B'的坐标为:(0,﹣6)
(3)解:当以AB为对角线时,点D坐标为(﹣7,3);
当以AC为对角线时,点D坐标为(3,3);
当以BC为对角线时,点D坐标为(﹣5,﹣3)
【解析】(1)B关于A对称的点坐标可套中点公式,即A是中点;(3)以A,B,C为顶点的平行四边形分三类:以AB为对角线;以AC为对角线;以BC为对角线;利用点平移后坐标的变化规律可求出.
【考点精析】根据题目的已知条件,利用坐标与图形变化-平移的相关知识可以得到问题的答案,需要掌握新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等.
科目:初中数学 来源: 题型:
【题目】如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)判断∠ABE与∠ACD的数量关系,并说明理由;
(2)求证:过点A、F的直线垂直平分线段BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点,点是轴上两点,其中,点都在轴上,在射线上(不与点重合),,连结.
(1)求、的坐标;
(2)如图,若在轴正半轴,在线段上,当时,求证:为等边三角形;(提示:连结)
(3)当时,在图中画出示意图,设,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,直线AB∥CD,E为AB、CD间的一点,连接EA、EC.
(1)如图①,若∠A=20°,∠C=40°,则∠AEC= °.
(2)如图②,若∠A=x°,∠C=y°,则∠AEC= °.
(3)如图③,若∠A=α,∠C=β,则α,β与∠AEC之间有何等量关系.并简要说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,AD=13,BAD和ADC的角平分线分别交BC于E,F,且EF=6,则平行四边形的周长是____________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,在面积为3的正方形ABCD中,E,F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.
(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y= (x>0)的图象上,已知点B的坐标是( , ),则k的值为( )
A.4
B.6
C.8
D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,1)=2.5,T(4,﹣2)=4.
(1)求a,b的值;
(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l∥AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABCD的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BCA′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为3或7.其中正确的是( )
A. ①②④ B. ①③④ C. ①②③ D. ①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com