精英家教网 > 初中数学 > 题目详情

【题目】已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
(1)如图①,求∠T和∠CDB的大小;
(2)如图②,当BE=BC时,求∠CDO的大小.

【答案】
(1)解:如图①,∵连接AC,

∵AT是⊙O切线,AB是⊙O的直径,

∴AT⊥AB,即∠TAB=90°,

∵∠ABT=50°,

∴∠T=90°﹣∠ABT=40°,

由AB是⊙O的直径,得∠ACB=90°,

∴∠CAB=90°﹣∠ABC=40°,

∴∠CDB=∠CAB=40°;


(2)解:如图②,连接AD,

在△BCE中,BE=BC,∠EBC=50°,

∴∠BCE=∠BEC=65°,

∴∠BAD=∠BCD=65°,

∵OA=OD,

∴∠ODA=∠OAD=65°,

∵∠ADC=∠ABC=50°,

∴∠CDO=∠ODA﹣∠ADC=65°﹣50°=15°.


【解析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;(2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=65°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=65°,由此可得结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点MCD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.

(1) ①依题意补全图形;

②求证:BEAC.

(2)请探究线段BE,AD,CN所满足的等量关系,并证明你的结论.

(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,存在直线和直线

1)直接写出两点的坐标;

2)求出直线、直线的交点及两条直线与轴围成的三角形的面积;

3)结合图象,直接写出的取值范围_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为5,CE=2,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.
(1)求证:DF∥AO;
(2)若AC=6,AB=10,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学九(2)班同学为了了解2019年某小区家庭月均用水情况,随机调查了该小区的部分家庭,并将调查数据进行如下整理:

月均用水量(吨)

频数

频率

6

0.12

________

0.24

16

0.32

10

0.20

4

________

2

0.04

请解答以下问题:

1)把上面的频数分布表和频数分布直方图补充完整;

2)月均用水量的中位数落在第________小组;

3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个角的差的绝对值等于90°,就称这两个角互为垂角,例如:∠1120°,∠230°,|∠1﹣∠2|=90°,则∠1和∠2互为垂角,(本题中所有角都是指大于0°且小于180°的角)

1)如图1所示,O为直线AB上一点,OCABOEOD,图中哪些角互为垂角?(写出所有情况)

2)如图2所示,O为直线AB上一点,∠AOC60°,将∠AOC绕点O顺时针旋转n°(0°<n120),OA旋转得到OA′,OC旋转得到OC′,当n为何值时,∠AOC′与∠BOA′互为垂角?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三个顶点的坐标为( )

A.(-1,-1),(2,3),(5,1)
B.(-1,1),(3,2),(5,1)
C.(-1,1),(2,3),(5,1)
D.(1,-1),(2,2),(5,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示。大正方形固定不动,把小正方形以1厘米∕秒的速度向大正方形的内部沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S厘米2,完成下列问题:

1)平移到1.5秒时,重叠部分的面积为 厘米2.

2)求小正方形在平移过程中,St的关系式。

查看答案和解析>>

同步练习册答案