精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O 上,BD平分∠ABCAC于点EDFBCBC的延长线于点F

1)求证:FD是⊙O的切线;

2)若BD=8sinDBF=,求DE的长.

【答案】(1)详见解析;(2)

【解析】

(1)连接OD,根据角平分线的定义得到∠ABD=DBF,由等腰三角形的性质得到∠ABD=ODB,等量代换得到∠DBF=ODB,推出∠ODF=90°,根据切线的判定定理得到结论;

2)连接AD,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到∠DBF=ABD,解直角三角形得到AD=6,在RtADE中,解直角三角形得到DE=

1)连接OD

BD平分∠ABCAC于点E

∴∠ABD=DBF

OB=OD

∴∠ABD=ODB

∴∠DBF=ODB

∵∠DBF+BDF=90°

∴∠ODB+BDF=90°

∴∠ODF=90°

FD是⊙O的切线;

2)连接AD

AB是⊙O的直径,

∴∠ADE=90°

BD平分∠ABCAC于点E

∴∠DBF=ABD

RtABD中,BD=8

sinABD=sinDBF=

AB=10AD=6

∵∠DAC=DBC

sinDAE=sinDBC=

RtADE中,sinDAC=

DE=3x,则AE=5x

AD=4x

tanDAE=

DE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+ca≠0)的对称轴是,且经过A(﹣40),C02)两点,直线ly=kx+tk≠0)经过AC

1)求抛物线和直线l的解析式;

2)点P是直线AC上方的抛物线上一个动点,过点PPDx轴于点D,交AC于点E,过点PPFAC,垂足为F,当PEFAED时,求出点P的坐标;

3)在抛物线的对称轴上是否存在点Q,使ACQ为等腰三角形?若存在,直接写出所有满足条件的Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,,点分别在边上,,连结,点分别为的中点.

1)观察猜想图1中,线段的数量关系是_______,位置关系是_______

2)探究证明把绕点逆时针方向旋转到图2的位置,连结,判断的形状,并说明理由;

3)拓展延伸把绕点在平面内自由旋转,若,请直接写出面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2:

(1)求反比例函数的表达式;

(2)将直线l1:y=﹣x向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点分别在上,且,以为圆心,长为半径作圆,经过点,与分别交于点

1)求证:的切线;

2)若,求的半径;

3)在(2)的条件下,若的内切圆圆心为,直接写出的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(3,6)、B(9,一3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016湖北省黄冈市)如图,已知点A1a)是反比例函数的图象上一点,直线与反比例函数的图象在第四象限的交点为点B

1)求直线AB的解析式;

2)动点Px0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

【答案】1y=x4;(2P40).

【解析】试题分析:(1)先把A1a)代入反比例函数解析式求出a得到A点坐标,再解方程组,得B点坐标,然后利用待定系数法求AB的解析式;

2)直线ABx轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB≤AB(当PAB共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB之差达到最大,从而得到P点坐标.

试题解析:(1)把A1a)代入a=﹣3,则A1﹣3),解方程组: ,得: ,则B3﹣1),设直线AB的解析式为y=kx+b,把A1﹣3),B3﹣1)代入得: ,解得: ,所以直线AB的解析式为y=x﹣4

2)直线ABx轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q40),因为PA﹣PB≤AB(当PAB共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(40).

考点:反比例函数与一次函数的交点问题.

型】解答
束】
22

【题目】成都三圣乡花卉基地出售两种盆栽花卉:太阳花6/盆,绣球花10/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.

(1)若小张家花台绿化需用60盆两种盆栽花卉,小张爸爸给他460元钱去购买,问两种花卉各买了多少盆?

(2)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;

(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的对角线相交于点

1)求证:

2)若,连接,判断四边形的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在一条长为600m的笔直道路上均匀地跑步,速度分别为,起跑前乙在起点,甲在乙前面50m处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是(

A.B.C.D.

查看答案和解析>>

同步练习册答案