精英家教网 > 初中数学 > 题目详情

【题目】为了在中考体育考试中取得好成绩,每位同学都认真训练,体育成绩也大幅提高,这是从我校某次模拟考试中随机抽取了50名同学的一分钟跳绳次数,并绘制出部分频数分布表和部分频数分布直方图,如下图所示:

请结合图表完成下列问题:

(1)表中的a   

(2)请把频数分布直方图补充完整;

(3)若初三年级共有800名学生,中考体考一分钟跳绳次数大于等于185即为满分20分,根据以上信息,请你估算全年级学生一分钟跳绳次数得满分的人数.

【答案】(1)12.(2)详见解析;(3)96(人).

【解析】

(1)根据总人数=各组人数之和,即可解决问题;

(2)3,4组人数画出条形图即可;

(3)用样本估计总体的思想即可解决问题;

解:(1)a=50﹣6﹣8﹣18﹣6=12(人).

故答案为12.

(2)频数分布直方图如图所示,

(3)初三年级共有800名学生,得满分的人数=800×=96(人).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线.下列结论中,正确的是(  )

A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度hm)与它的飞行时间ts)满足二次函数关系,th的几组对应值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之间的函数关系式(不要求写t的取值范围);

(2)求小球飞行3s时的高度;

(3)问:小球的飞行高度能否达到22m?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的解析式是y=x2﹣2x﹣3.

(1)与y轴的交点坐标是   ,顶点坐标是   

(2)在坐标系中利用描点法画出此抛物线;

x

y

(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,BA=BC,∠ABC=α(0°<α<180°),点P为直线BC上一动点(不与点B,C重合),连接AP,将线段PA绕点P顺时针旋转α度得到线段PQ,连接CQ.

(1)当α=90°,且点P在线段BC上时,过P作PF∥AC交直线AB于点F,如图1,图中与△APF全等的是哪个三角形,∠ACQ的度数

(2)当点P在BC延长线上,AB:AC=m:n时,如图2,试求线段BP与CQ的比值;

(3)当点P在直线BC上,α=60°,∠APB=30°,CP=4时,请直接写出线段CQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2+bx+4x轴交于AB两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点D,且3OC=4OB,对称轴为直线x,点E,连接CE交对称轴于点F,连接AF交抛物线于点G

(1)求抛物线的解析式和直线CE的解析式;

(2)如图,过EEPx轴交抛物线于点P,点Q是线段BC上一动点,当QG+QB最小时,线段MN在线段CE上移动,点M在点N上方,且MN,请求出四边形PQMN周长最小时点N的横坐标;

(3)如图③,BC与对称轴交于点R,连接BD,点S是线段BD上一动点,将△DRS沿直线RS折叠至△DRS,是否存在点S使得△DRS与△BRS重叠部分的图形是直角三角形?若存在,请求出BS的长,若不存在,请说明理由.(参考数据:tan∠DBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;

(2)分别计算甲、乙六次测试成绩的方差;

(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.

计算方差的公式:s2 [(x1)2+(x2)2++(xn)2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AD是等腰ABCBC边上的高,且ADBC,请通过画图求出∠ABC所有可能的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC 中,D BC 边的中点,E、F 分别在 AD 及其延长线上,CEBF,连接BE、CF.

(1)求证:BDF ≌△CDE;

(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.

查看答案和解析>>

同步练习册答案