【题目】某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.
(1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若运送三种苹果所获利润的情况如下表所示:
设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W最大,并求出最大利润.
【答案】(1)y与x之间的函数关系式为 ,自变量x的取值范围是x =1或x =2或x =3;
(2)获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.
【解析】试题分析:
(1)根据这三种苹果总重量是100t,列出关于x,y的方程,得到y与x之间的函数关系式,然后由每种苹果不少于一车,且x,y都是正整数得到自变量的取值范围;
(2)根据表格中所给数据,得到w与x之间的函数关系式,再由函数的性质,结合自变量的取值范围解决问题.
试题解析:
(1)∵,
∴ y与x之间的函数关系式为 .
∵ y≥1,解得x≤3.
∵ x≥1, ≥1,且x是正整数,
∴ 自变量x的取值范围是x =1或x =2或x =3.
(2).
因为W随x的增大而减小,所以x取1时,可获得最大利润,
此时(万元).
获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前“自驾游”已成为人们出游的重要方式.“十一”国庆节,某老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.
(1)求舟山与嘉兴两地间的高速公路路程;
(2)两座跨海大桥的长度及过桥费见下表:
大桥名称 | 舟山跨海大桥 | 杭州湾跨海大桥 |
大桥长度 | 48千米 | 36千米 |
过桥费 | 100元 | 80元 |
交通部门规定:轿车的高速公路通行费(元)的计算方法为: ,其中(元/千米)为高速公路里程费, (千米)为高速公路里程(不包括跨海大桥长),(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红安卷烟厂生产的“龙乡”牌香烟盒里,装满大小均匀的20支香烟,打开烟盒的顶盖后,二十支香烟排列成三行,经测量,一支香烟的直径约为0.75cm,长约为8.4cm.
(1)试计算烟盒顶盖ABCD的面积(本小题计算结果不取近似值).
(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到0.1cm, 取1.73).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.求原计划每天加工多少套运动服?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两上数的和.现以这组数中的各个数作为正方形的边长构造如图1正方形:再分别依次从左到右取2个、3个、4个、5个正方形拼成如图2所示的长方形并记为①、②、③、④.若按此规律继续作长方形,则序号为⑧的长方形的周长是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com