【题目】如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;
【答案】(1)抛物线的解析式为:y=x2﹣x﹣3,顶点D的坐标为(2,﹣);
(2)存在,C坐标为:(4,0)或(﹣4,0),(5+,0)或(5﹣2,0),(,0),
【解析】
(1)根据抛物线的顶点D的横坐标为2,可设抛物线的解析式为,再将点A和B的坐标代入即可得;
(2)先求出AB的长,然后分哪两条边为等腰的腰,设点C的坐标为,根据两腰相等,利用两点之间距离公式建立等式,求解即可.
(1)抛物线的顶点D的横坐标为2,可设抛物线的解析式为:
将代入得
解得:
则抛物线的解析式为:(或写成一般形式)
由顶点式可得顶点D的坐标为;
( 2)设点C坐标
因
则
①当时,则
解得:,即点C坐标为:或
②当时,则
解得:,即点C坐标为或
③当时,则
解得:,即点C坐标为
综上,存在这样的点C,点C的坐标为或或或或.
科目:初中数学 来源: 题型:
【题目】“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长”.(1尺=10寸)则CD=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的
俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.
①求点H到桥左端点P的距离;
②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM
(2)当AE=1时,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为,则其升高可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线上部分点的横坐标,纵坐标的对应值如下表:
… | -2 | -1 | 0 | 1 | 2 | … | |
… | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中正确的是______.(填写序号)
①抛物线与轴的一个交点为; ②函数的最大值为6;
③抛物线的对称轴是直线; ④在对称轴左侧,随增大而增大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)解方程:x2﹣5x﹣6=0
(2)如图,△ABC中∠C=90°
①将△ABC绕A点逆时针旋转90°,画出旋转后的三角形△AB′C′;
②若BC=3,AC=4,B点旋转后的对应是B′,求 的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA· PB=PC·PD
(1)如图(2),若AB与CD相交于圆外一点P, 上面的结论是否成立?请说明理由.
(2)如图(3),将PD绕点P逆时针旋转至与⊙O相切于点C, 直接写出PA、PB、PC之间的数量关系.
(3)如图(3),直接利用(2)的结论,求当 PC= ,PA=1时,阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A1、A2、A3、…、An在x轴上,且OA1=A1A2=A2A3=…=An﹣1An=1,分别过点A1、A2、A3、……、An作x轴的垂线,交反比例函数y=(x>0)的图象于点B1、B2、B3、…、Bn,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2,…,若记△B1P1B2的面积为S1,△B2P2B3的面积为S2,…,△BnPnBn+1的面积为Sn,则S1+S2+…+S2019=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com