【题目】如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).
(1)求a,b的值;
(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.
【答案】(1);(2)S关于x的函数表达式为S=﹣x2+8x(2<x<6),面积S有最大值为16.
【解析】试题分析:(1)把A与B坐标代入二次函数解析式求出a与b的值即可;
(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.
试题解析:
(1)将点A(2,4),B(6,0)的坐标分别代入y=ax2+bx,
得解得
(2)如解图,过点A作x轴的垂线,垂足为D(2,0),过点C作CE⊥AD,CF⊥x轴,垂足分别为E,F,连结AC,BC,CD.
则S△OAD=OD·AD=×2×4=4,
S△ACD=AD·CE=×4×(x-2)=2x-4,
S△BCD=BD·CF=×(6-2)×=-x2+6x,
∴S=S△OAD+S△ACD+S△BCD=4+2x-4-x2+6x=-x2+8x,
∴S关于x的函数表达式为S=-x2+8x(2<x<6).
∵S=-x2+8x=-(x-4)2+16,
∴当x=4时,四边形OACB的面积S有最大值,最大值为16.
科目:初中数学 来源: 题型:
【题目】看图填空:
(1)∠1和∠3是直线__________被直线__________所截得的__________;
(2)∠1和∠4是直线__________被直线__________所截得的__________;
(3)∠B和∠2是直线__________被直线__________所截得的__________;
(4)∠B和∠4是直线__________被直线__________所截得的__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y=kx+b与y轴交于点A(0,7),直线l2:y=3x﹣3交y轴于点B,交直线l1于点P(2,m).
(1)求直线l1的解析式;
(2)求△PAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知图1将线段AB向右平移1个单位长度,图2是将线段AB折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;
(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩下部分的面积;
(3)如图4,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽度为1 m,求这块菜地的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com