精英家教网 > 初中数学 > 题目详情
如图,二次函数y1=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y2=kx+b的图象经过该二次函数图象上点A(1,0)及点B.
(1)求m的值;
(2)求二次函数与一次函数的解析式;
(3)根据图象,写出满足y2≥y1的x的取值范围.
考点:二次函数与不等式(组),待定系数法求一次函数解析式,待定系数法求二次函数解析式
专题:
分析:(1)将点A的坐标代入函数解析式求解即可得到m的值;
(2)把m的值代入即可得到二次函数解析式,先求出点C的坐标,再利用二次函数的对称性求出点B的坐标,然后利用待定系数法求一次函数解析式解答;
(3)根据函数图象写出直线在二次函数图象上方部分的x的取值范围即可.
解答:解:(1)将点A(1,0)代入y=(x-2)2+m得,
(1-2)2+m=0,1+m=0,m=-1;

(2)二次函数解析式为y=(x-2)2-1,
当x=0时,y=4-1=3,故C点坐标为(0,3),
由于C和B关于对称轴对称,在设B点坐标为(x,3),
令y=3,有(x-2)2-1=3,
解得x=4或x=0,
则B点坐标为(4,3),
将A(1,0)、B(4,3)代入y=kx+b得,
k+b=0
4k+b=3

解得
k=1
b=-1

所以,一次函数解析式为y=x-1;

(3)∵A、B坐标为(1,0),(4,3),
∴当y2≥y1时,1≤x≤4.
点评:本题考查了二次函数与不等式,二次函数图象上点的坐标特征,待定系数法求一次函数解析式,待定系数法求二次函数解析式,熟练掌握函数解析式的求解方法是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知y1=a2+b2,y2=y1-3,y1•y2=4,则y1的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若|2a-4|+|b+2|+
(a-3)b2
+4=2a,求a和b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

用公式法解方程:2x2+7x=4.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交BC边于点E.若BE=2,∠B=22.5°
(1)求AE的长和∠AEC的度数;
(2)求△ABC的面积(保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:90°-42°51′25″÷5=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

x
(x-2)2
=
A
x-2
+
B
(x-2)2
,且A、B为数字,则A=
 
,B=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
2
x2+3x+2
+
5
x2-x-6
-
x-2
x2-2x-3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x=-2是方程3x+4=
2
x
+m的解,则m的值是多少?

查看答案和解析>>

同步练习册答案