| A. | 30° | B. | 45° | C. | 55° | D. | 60° |
分析 根据三角形的一个外角等于与它不相邻的两个内角的和,列式求出∠ABN,再根据角平分线的定义求出∠ABE和∠BAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.
解答
解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE=$\frac{1}{2}$∠ABN,∠BAC=$\frac{1}{2}$∠BAO,
∴∠C=∠ABE-∠BAC=$\frac{1}{2}$(∠AOB+∠BAO)-$\frac{1}{2}$∠BAO=$\frac{1}{2}$∠AOB,
∵∠MON=90°,
∴∠AOB=90°,
∴∠C=$\frac{1}{2}$×90°=45°.
故选(B)
点评 本题怎样考查了三角形外角的性质,以及角平分线的定义,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.
科目:初中数学 来源: 题型:选择题
| A. | x1=x2=2 | B. | x1=x2=$\frac{1}{2}$ | C. | x1=x2=-2 | D. | x1=x2=-$\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{(-3)^{2}}$=-3 | B. | $\sqrt{7}$+$\sqrt{3}$=$\sqrt{10}$ | C. | $\sqrt{{x}^{2}}$=|x| | D. | ($\sqrt{-x}$)2=x |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | S=t2-6t+72 | B. | S=t2+6t+72 | C. | S=t2-6t-72 | D. | S=t2+6t-72 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com