【题目】(满分7分)五月石榴红,枝头鸟儿歌.一只小鸟从石榴树上的A处沿直线飞到对面一房屋的顶部C处.从A处看房屋顶部C处的仰角为,看房屋底部D处的俯角为,石榴树与该房屋之间的水平距离为米,求出小鸟飞行的距离AC和房屋的高度CD.
【答案】解:作AE⊥CD于点E.
由题意可知:∠CAE =30°,∠EAD =45°,AE=米. …………………1分
在Rt△ACE中,tan∠CAE=,即tan30°=.
∴CE==(米),……………………………………3分
∴AC=2CE=2×3 =6(米). ……………………………………………………4分
在Rt△AED中,∠ADE=90°-∠EAD =90°-45°= 45°,
∴DE=AE=(米). ………………………………………………………5分
∴DC=CE+DE=(3+)米. ……………………………………………6分
答:AC=6米,DC=(3+)米. …………………………………………7分
【解析】略
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C 顺时针旋转90°至CE,连接AE.
(1)求证:△BCD≌△ACE;
(2)如图2,连接ED,若CD=,AE=1,求AB的长;
(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校“心灵信箱”的设立,为师、生之间的沟通开设了一个书面交流的渠道.为了解九年级学生对“心灵信箱”开通两年来的使用情况,某课题组对该校九年级全体学生进行了一次问卷调查,并根据调查结果绘制了如下尚不完整的统计图.
根据图表,解答以下问题:
(1)该校九年级学生共有 人;
(2)学生调查结果扇形统计图中,扇形D的圆心角度数是 ;
(3)请你补充条形统计图;
(4)根据调查结果可以推断:两年来,该校九年级学生通过“心灵信箱”投递出的信件总数至少有 封.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上,AB与x轴交于点E,BE:AE=1:2.若点B的坐标为(-2,1),则k的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中,AB=5,点D为BC上一点,BD:DC=1:4.点E和点F分别是AB、AC边上的点,将△AEF沿EF折叠,使点A刚好落在点D处,则AF=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.
材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一.所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.
例:已知:,求代数式的值.
解:∵,∴
即,∴,∴.
材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.
例:若2x=3y=4z,且xyz≠0,求的值.
解:令2x=3y=4z=k(k≠0)
则,,,∴
根据材料回答问题:
(1)已知,则= ;
(2)解分式方程组:;
(3)若,x≠0,y≠0,z≠0,且abc=5,求xyz的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点、在轴上,点在轴上,,,为线段上一动点,以为边在轴上方作正方形,连接.
(1)若点的坐标为,则________;
(2)当________时,轴;
(3)当点由点运动到点过程中,点经过的路径长为________;
(4)当面积最大时,求出的长及面积最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题发现:
(1)如图1,在Rt△ABC中,∠BAC=30°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC, ∠BCD的度数是 ;线段BD,AC之间的数量关系是 .
类比探究:
(2)在Rt△ABC中,∠BAC=45°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,请问(1)中的结论还成立吗?;
拓展延伸:
(3)如图3,在Rt△ABC中,AB=2,AC=4,∠BDC=90°,若点P满足PB=PC,∠BPC=90°,请直接写出线段AP的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com