3£®Èçͼ¢Ù£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏB=90¡ã£¬AB=CB=4£¬AD=2£®µãP´ÓBµã³ö·¢£¬ÑØÏß¶ÎBCÏòµãCÔ˶¯£¬Ô˶¯ËÙ¶ÈΪÿÃë2¸öµ¥Î»£»µãQ´ÓDµã³ö·¢£¬ÑØÏß¶ÎDAÏòµãAÔ˶¯£¬Ô˶¯ËÙ¶ÈΪÿÃë1¸öµ¥Î»£¬µ±Qµãµ½´ïÖÕµãʱ£¬Á½µã¾ùÍ£Ö¹Ô˶¯£®¹ýµãQ×÷´¹Ö±ÓÚADµÄÖ±Ïß½»Ïß¶ÎACÓÚµãM£¬½»Ïß¶ÎBCÓÚµãN£®ÉèÔ˶¯µÄʱ¼äΪt£®
£¨1£©·Ö±ðÇó³öMCºÍNC³¤£¨Óú¬ÓÐtµÄʽ×Ó±íʾ£©£»
£¨2£©µ±ËıßÐÎPCDQΪƽÐÐËıßÐÎʱ£¬ÇótµÄÖµ£»
£¨3£©ÊÇ·ñ´æÔÚijһʱ¿Ìt£¬Ê¹µÃÖ±ÏßQNͬʱƽ·Ö¡÷ABCµÄÖܳ¤ºÍÃæ»ý£¿Èô´æÔÚ£¬ÇëÇó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨4£©Èçͼ¢Ú£¬Á¬½ÓPM£¬ÇëÖ±½Óд³öµ±tΪºÎֵʱ£¬¡÷PMCΪµÈÑüÈý½ÇÐΣ®

·ÖÎö £¨1£©ÉèQD=t£¬BP=2t£¬ÔÙÀûÓõÈÑüÖ±½ÇÈý½ÇÐκÍÈý½Çº¯ÊýµÄÐÔÖʽøÐнâ´ð¼´¿É£»
£¨2£©¸ù¾ÝƽÐÐËıßÐεÄÐÔÖʽøÐнâ´ð¼´¿É£»
£¨3£©¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½ºÍÒ»Ôª¶þ´Î·½³ÌµÄ½â·¨½øÐнâ´ð¼´¿É£»
£¨4£©·ÖÈýÖÖÇé¿öÀûÓõÈÑüÈý½ÇÐεÄÐÔÖʽøÐнâ´ð¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºQD=t£¬BP=2t£¬
AQ=2-t=BN£¬
¡àNC=4-£¨2-t£©=t+2£¬
¡ß¡ÏB=90¡ã£¬AB=CB£¬
¡à¡ÏBCA=45¡ã£¬
¡àMC=$\frac{NC}{cos45¡ã}=\sqrt{2}$£¨t+2£©=$\sqrt{2}$t+2$\sqrt{2}$£»
£¨2£©ÈôËıßÐÎPCDQΪƽÐÐËıßÐΣ¬
ÔòPC=DQ£¬
¡ßBP=2t£¬
¡àPC=4-2t£¬
¡à4-2t=t£¬
½âµÃ£ºt=$\frac{4}{3}$£¬
¡àt=$\frac{4}{3}$Ãëʱ£¬ËıßÐÎPCDQΪƽÐÐËıßÐΣ»
£¨3£©²»´æÔÚ£¬ÀíÓÉÈçÏ£º
¼ÙÉèQNƽ·ÖÁË¡÷ABCµÄÃæ»ý
Ôò$\frac{1}{2}N{C}^{2}=\frac{1}{2}¡Á\frac{1}{2}B{C}^{2}$£¬¼´$\frac{1}{2}£¨t+2£©^{2}=\frac{1}{2}¡Á\frac{1}{2}¡Á{4}^{2}$£¬
½âµÃ£º${t}_{1}=2\sqrt{2}-2£¬{t}_{2}=-2\sqrt{2}-2$£¨Éᣩ£¬
´Ëʱ£¬NC=$2\sqrt{2}$£¬MC=8£¬BN=4-2$\sqrt{2}$£¬AM=$4\sqrt{2}$-8£¬
¡àBN+AB+AM=4-$2\sqrt{2}$+4+$4\sqrt{2}$-8=$2\sqrt{2}$£¬
MC+NC=8+$2\sqrt{2}$£¬
¡àBN+AB+AM¡ÙMC+NC£¬
¡à²»´æÔÚij¸öʱ¿ÌʹµÃÖ±ÏßQNͬʱƽ·Ö¡÷ABCµÄÖܳ¤ºÍÃæ»ý£»
£¨4£©µ±t=0£¬¡÷PMCΪµÈÑüÈý½ÇÐΣ»
µ±t=$6-4\sqrt{2}$£¬¡÷PMCΪµÈÑüÈý½ÇÐΣ»
µ±t=$\frac{2}{3}$£¬¡÷PMCΪµÈÑüÈý½ÇÐΣ®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÐÔÖÊ£®ÔÚ½âÌ⣨3£©Ê±£¬Ó¦×¢Òâ·ÖÇé¿ö½øÐÐÌÖÂÛ£¬·ÀÖ¹ÔÚ½âÌâ¹ý³ÌÖгöÏÖ©½âÏÖÏó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®»¯¼ò£º£¨a-b+$\frac{{b}^{2}}{a+b}$£©•$\frac{a+b}{a}$•$\frac{[£¨a+b£©^{2}-£¨a-b£©^{2}]}{b}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èôx=1ÊǹØÓÚxµÄ·½³Ìx2-px+q=0µÄÒ»¸ù£¬Ôò´úÊýʽp2-q2-2qµÄÖµÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÃæ¼ÆËãÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B£®$\sqrt{18}$-$\sqrt{8}$=$\sqrt{2}$C£®$\sqrt{£¨-3£©^{2}}$=-3D£®-1-1=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¹æ¶¨a?b=a+b-1£¬a¡Ñb=ab-a2£¬Ôò£¨-2£©¡Ñ[7?£¨-3£©]=-10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÒ»´Îº¯Êýy=£¨1-m£©x|m|-1+3µÄº¯ÊýÖµyËæxµÄÔö´ó¶øÔö´ó£¬ÔòmµÄȡֵΪ£¨¡¡¡¡£©
A£®2B£®1C£®-2D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈôÒ»¸ö¶à±ßÐεÄÄڽǺÍΪ900¡ã£¬Ôò´ÓÕâ¸ö¶à±ßÐÎµÄÆäÖÐÒ»¸ö¶¥µã³ö·¢ÒýµÄ¶Ô½ÇÏßµÄÌõÊýΪ£¨¡¡¡¡£©
A£®4B£®5C£®6D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èô¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¨m+1£©x2+2x-m2+1=0µÄÒ»¸ö¸ùΪ0£¬ÔòmµÄÖµ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª£ºÈçͼ£¬AB=CD£¬AB¡ÎCD£¬DE¡ÍAC£¬BF¡ÍAC£¬E¡¢FÊÇ´¹×㣬AF=5£¬ÇóCEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸