【题目】如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,﹣3),一次函数y2=mx+n的图象过点A、C.
(1)求二次函数的解析式;
(2)求二次函数的图象与x轴的另一个交点A的坐标;
(3)根据图象写出y2<y1时,x的取值范围.
【答案】(1) ;(2) 此二次函数的图象与x轴的另一个交点A的坐标为(﹣3,0);(3) x<﹣3或x>0.
【解析】
(1)把B(1,0),C(0,﹣3)分别代入得到关于b、c的方程组,求出b、c即可;
(2)令y1=0,得到x2+2x﹣3=0,然后解一元二次方程即可得到二次函数的图象与x轴的另一个交点A的坐标;
(3)观察图象可得当x<﹣3或x>0,抛物线都在直线的上方,即y2<y1.
解:(1)由二次函数的图象经过B(1,0)、C (0,﹣3)两点,
得,
解这个方程组,得,
∴抛物线的解析式为;
(2)令y1=0,得x2+2x﹣3=0,
解这个方程,得x1=﹣3,x2=1,
∴此二次函数的图象与x轴的另一个交点A的坐标为(﹣3,0);
(3)当x<﹣3或x>0,y2<y1.
科目:初中数学 来源: 题型:
【题目】闺蜜装在大学校园里盛行,闺蜜装能很好的表达“亲如姐妹”的友谊,也能成为校园一道靓丽的风景.某专卖店购进一批,两款闺蜜装,共花费了18400元,款比款多20套,其中每套款闺蜜装进价200元,每套款闺蜜装进价160元.进行试销售,供不应求,很快销售完毕,己知每套款闺蜜装售价为240元.
(1)求购进,两款闺蜜装各多少套?
(2)国庆将至,专卖店又购进第二批,两款闺蜜装并进行促销活动,在促销期间,每套款闺蜜装在进价的基础上提高销售,每套款闺蜜装在第一批售价的基础上降低销售,结果在促销售活动中,款闺蜜装的销量比第一批款销售量降低了,款闺蜜装的销售量比第一批款销售量上升了,结果本次促销活动共获利5200元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(定义)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求证:CD为△ABC的完美分割线;
(2)在△ABC中,CD是△ABC的完美分割线,其中△ACD为等腰三角形,设∠A=x°,∠B=y°,则y与x之间的关系式为_____________________________;
(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出m= ,n= ;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将含有 30°角的直角三角板 OAB 如图放置在平面直角坐标系中,OB 在 x轴上,若 OA=2,将三角板绕原点 O 顺时针旋转 75°,则点 A 的对应点 A′ 的坐标为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC与BD交于点O,若增加一个条件,使ABCD成为菱形,下列给出的条件不正确的是( )
A.AB=ADB.AC⊥BDC.AC=BDD.AD=CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线型拱桥,当拱顶离水面8m时,水面宽AB为12m.当水面上升6m时达到警戒水位,此时拱桥内的水面宽度是多少m?
下面给出了解决这个问题的两种方法,请补充完整:
方法一:如图1,以点A为原点,AB所在直线为x轴,建立平面直角坐标系xOy,
此时点B的坐标为( , ),抛物线的顶点坐标为( , ),
可求这条抛物线所表示的二次函数的解析式为 .
当y=6时,求出此时自变量x的取值,即可解决这个问题.
方法二:如图2,以抛物线顶点为原点,对称轴为y轴,建立平面直角坐标系xOy,
这时这条抛物线所表示的二次函数的解析式为 .
当y= 时,求出此时自变量x的取值为 ,即可解决这个问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C = 90°,∠BAC 的平分线交BC于点D,点O在AB上,以点O为圆心、OA长为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若OA = 2,∠B = 30°,求涂色部分的面积(结果保留和根号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com