分析 取BC的中点E,连接AE,作EF⊥AP,证明△ABE≌△AFE,得EF=BE=EC,得△EFP≌△ECP,得△ECP∽△ABE.即可求CP的长度.
解答 解:取BC的中点E,连接AE,作EF⊥AP,
则△ABE≌△ADQ,得EB=EC=4,
由$\left\{\begin{array}{l}{AE=AE}\\{∠EFA=∠EBA}\\{∠BAE=∠FAE}\end{array}\right.$
得:△ABE≌△AFE,
∴∠AEB=∠AEF,![]()
得EF=EB=EC,
∵PE=PE,
∴∠ECP=∠EFP=90°,
∴△EPC≌△EPF,
∴∠FEP=∠PEC,
∴∠AEP=∠AEF+∠FEP=90°,
∴∠PEF=∠PEC=∠EAP=∠EAB,
∴△CEP∽△BAE,
∴$\frac{PC}{EC}$=$\frac{BE}{AB}$=$\frac{4}{8}$=$\frac{1}{2}$,
即PC=2.
点评 本题考查的是全等三角形的判定,相似三角形对应边相等的性质,考查了正方形各边相等,且各内角均为直角的性质,本题求证△AEP是直角三角形是解本题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 36 | B. | 25 | C. | 18 | D. | 9 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com