【题目】如图,直线y=x﹣2(k≠0)与y轴交于点A,与双曲线y=在第一象限内交于点B(3,b),在第三象限内交于点C.
(1)求双曲线的解析式;
(2)直接写出不等式x﹣2>的解集;
(3)若OD∥AB,在第一象限交双曲线于点D,连接AD,求S△AOD.
【答案】(1)y=;(2)﹣1<x<0或x>3;(3)
【解析】
(1)把点B(3,b)代入y=x﹣2,得到B的坐标,然后根据待定系数法即可求得双曲线的解析式;
(2)解析式联立求得C的坐标,然后根据图象即可求得;
(3)求得直线OD的解析式,然后解析式联立求得D的坐标,根据三角形面积公式求得即可.
(1)∵点B(3,b)在直线y=x﹣2(k≠0)上,
∴b=3﹣2=1,
∴B(3,1),
∵双曲线y=经过点B,
∴k=3×1=3,
∴双曲线的解析式为y=;
(2)解得或,
∴C(﹣1,﹣3),
由图象可知,不等式x﹣2>的解集是﹣1<x<0或x>3;
(3)∵OD∥AB,
∴直线OD的解析式为y=x,
解,解得或,
∴D(,),
由直线y=x﹣2可知A(0,﹣2),
∴OA=2,
∴S△AOD==.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+5ax+c(a<0)与x轴负半轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是抛物线的顶点,过D作DH⊥x轴于点H,延长DH交AC于点E,且S△ABD:S△ACB=9:16,
(1)求A、B两点的坐标;
(2)若△DBH与△BEH相似,试求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.
(1)求矩形ABCD与△A′B′D′重叠部分(如图中阴影部分A′B′CE)的面积;
(2)将△A′B′D′以2cm/s的速度沿直线BC向右平移,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为ycm2,移动的时间为x秒,请你求出y关于x的函数关系式,并指出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.
(1)求点和点的坐标;
(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .
①当时,求关于的函数关系式;
②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;
③直接写出②中的最大值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE平分∠ABC,则下列关系式中成立的有( )
①,②,③,④CE2=CDBC.
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )
A.(,0)B.(2,0)C.(,0)D.(3,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象交于A(﹣1,0)、B(2,﹣3)两点.
(1)求m的值和二次函数的表达式.
(2)当y1>y2时,直接写出自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com