【题目】定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1=﹣x2时,都有y1=y2,称该函数为偶函数,根据以上定义,可以判断下面所给的函数中,是偶函数的有_____(填上所有正确答案的序号)
①y=2x;②y=﹣x+1;③y=x2;④y=﹣;⑤y=x2+3;⑥y=x2+2x+1.
【答案】③⑤
【解析】
根据一次函数的性质,二次函数的性质,反比例函数的性质,可得答案.
在①中,y1=2x1,y2=2x2=﹣2x1,此时y1≠y2,∴y=2x不是偶函数,
在②中,y1=﹣x1+1,y2=﹣x2+1=x1+1,此时y1≠y2,∴y=﹣x+1不是偶函数,
在③中,y1=,,此时y1=y2,∴y=2x是偶函数,
在④中,y1=﹣,y2=﹣=﹣,此时y1≠y2,∴y=﹣不是偶函数,
在⑤中,y1=+3,y2=,此时y1=y2,∴y=x2+3是偶函数,
在⑥中,y1=+2x1+1,y2=+2x2+1=﹣2x1+1,此时y1≠y2,∴y=x2+2x+1不是偶函数,
∴是偶函数的为③⑤,
故答案为:③⑤.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣2交x轴负半轴于点A(﹣1,0),与y轴交于B点.过B点的直线l交抛物线于点C(3,﹣1).过点C作CD⊥x轴,垂足为D.点P为x轴正半轴上的动点,过P点作x轴的垂线,交直线l于点E,交抛物线于点F.设P点的横坐标为t.
(1)求抛物线的解析式;
(2)连接OE,求△POE面积的最大值;
(3)连接DE,CF,是否存在这样的t值:以点C,D,E,F为顶点的四边形是平行四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点.
(1)求该抛物线的解析式;
(2)抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标,若不存在,请说明理由.
(3)设抛物线上有一个动点,当点在该抛物线上滑动到什么位置时,满足,并求出此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△PAB与△PCD均为等腰直角三角形,点C在PB上,若△ABC与△BCD的面积之和为10,则△PAB与△PCD的面积之差为( )
A. 5B. 10C. l5D. 20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.
(1)求反比例函数的解析式;
(2)求直线EB的解析式;
(3)求S△OEB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.
请你根据上面提供的信息回答下列问题:
(1)扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .
(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com