【题目】某精品店购进甲、乙两种小礼品,已知1件甲礼品的进价比1件乙礼品的进价多1元,购进2件甲礼品与1件乙礼品共需11元.
(1)求甲礼品的进价;
(2)经市场调查发现,若甲礼品按6元/件销售,则每天可卖40件;若按5元/件销售,则每天可卖60件.假设每天销售的件数y(件)与售价x(元/件)之间满足一次函数关系,求y与x之间的函数解析式;
(3)在(2)的条件下,当甲礼品的售价定为多少时,才能使每天销售甲礼品的利润为60元?
【答案】(1)甲礼品的进价为4元/件;(2)y=﹣20x+160;(3)当甲礼品的售价定为5元或7元时,才能使每天销售甲礼品的利润为60元.
【解析】
(1)根据:甲礼品进价乙礼品进价=1,2件甲礼品费用+1件乙礼品费用=11,列方程组可解;
(2)用待定系数法结合题意可求得函数解析式;
(3)由相等关系:(售价进价)×甲销售量=总利润,列出方程,解方程可得甲的售价.
解:(1)设甲礼品的进价为x元/件,乙礼品的进价为y元/件,根据题意有
,解得,
答:甲礼品的进价为4元/件.
(2)设甲礼品每天销售的件数y与售价x间函数关系式为:y=kx+b,根据题意可得
,解得,
∴y与x之间的函数解析式为:y=﹣20x+160.
(3)设甲礼品售价定为x元时可获得60元利润,根据题意,得
(x﹣4)(﹣20x+160)=60,即x2﹣12x+35=0,
解得x1=5,x2=7,
答:当甲礼品的售价定为5元或7元时,才能使每天销售甲礼品的利润为60元.
科目:初中数学 来源: 题型:
【题目】如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,∠ABC=∠ADE=90° ,CD与BE、AE分别交于点P、M.
求证:(1)△BAE∽△CAD;
(2)2CB2=CPCM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求一次函数和反比例函数的表达式;
(2)观察图象,直接写出方程kx+b-=0的解;
(3)观察图象,直接写出不等式kx+b-<0的解集;
(4)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).
(1)试确定此二次函数的解析式;
(2)请你判断点P(-2,3)是否在这个二次函数的图象上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG,BD,DG,下列结论:
①BE=CD;
②∠DGF=135°;
③∠ABG+∠ADG=180°;
④若,则.
其中正确的结论是 .(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1、x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.
(1)求实数a的取值范围;
(2)若x1、x2满足x1x2-x1=4+ x2,求实数a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了46米木栏.
(1)若a=26,所围成的矩形菜园的面积为280平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一个足球垂直地面向上踢,(秒)后该足球的高度(米)适用公式.
(1)经多少秒时足球的高度为20米?
(2)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.
(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;
(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com