精英家教网 > 初中数学 > 题目详情

【题目】如图,点A在线段BD上,在BD的同侧作等腰RtABC和等腰RtADE,∠ABC=ADE=90° CDBEAE分别交于点PM

求证:(1BAE∽△CAD

22CB2=CPCM

【答案】1)见解析;(2)见解析.

【解析】

(1)由相似三角形定理证明即可.

2)先证明CAP∽△CMA,即可得AC2=CPCM,由此可得2CB2=CPCM.

1)证明:由已知:AC=ABAD=AE

∵∠BAC=EAD

∴∠BAE=CAD

∴△BAE∽△CAD

2)由(1)得到

∵△BAE∽△CAD

∴∠BEA=CDA

∵∠PME=AMD

∴△PME∽△AMD

MPMD=MAME

PMA=DME

∴△PMA∽△EMD

∴∠APD=AED=90°

∵∠CAE=180°BACEAD=90°

∴△CAP∽△CMA

AC2=CPCM

AC=AB

2CB2=CPCM

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果三角形的两个内角αβ满足2α+β=90°,那么我们称这样的三角形为准互余三角形”.

(1)若ABC准互余三角形”,C>90°,A=60°,则∠B=   °;

(2)如图①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明ABD准互余三角形.试问在边BC上是否存在点E(异于点D),使得ABE也是准互余三角形?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC准互余三角形,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“ABABO”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):

血型统计表

血型

A

B

AB

O

人数

   

10

5

   

1)本次随机抽取献血者人数为   人,图中m   

2)补全表中的数据;

3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?

4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了你最喜欢的沟通方式调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

1)这次统计共抽查了   名学生,在扇形统计图中QQ的扇形圆心角的度数为   

2)将条形统计图补充完整;

3)某天甲、乙两名同学都想从微信QQ电话三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.

(1)求m的取值范围;

(2)写出一个满足条件的m的值,并求此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程.

1)(2x+3)2 -16=0

23x2+x-1=0

33x(x-1)=2-2x

49(3x-1)2 =(2-x)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+ca≠0)图象的一部分,抛物线的顶点坐标A13),与x轴的一个交点B40),直线y2=mx+nm≠0)与抛物线交于AB两点,下列结论:

①2a+b=0②abc0方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(﹣10);1x4时,有y2y1

其中正确的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围ABBC两边),设AB xm,花园面积S.

1)求S关于x的函数关系式,求x的取值范围;

2)若在P处有一棵树与墙CDAD的距离分别是15m6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某精品店购进甲、乙两种小礼品,已知1件甲礼品的进价比1件乙礼品的进价多1元,购进2件甲礼品与1件乙礼品共需11元.

1)求甲礼品的进价;

2)经市场调查发现,若甲礼品按6元/件销售,则每天可卖40件;若按5元/件销售,则每天可卖60件.假设每天销售的件数y(件)与售价x(元/件)之间满足一次函数关系,求yx之间的函数解析式;

3)在(2)的条件下,当甲礼品的售价定为多少时,才能使每天销售甲礼品的利润为60元?

查看答案和解析>>

同步练习册答案