【题目】(问题情境)
(1)古希腊著名数学家欧几里得在《几何原本》提出了射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项.射影定理是数学图形计算的重要定理.其符号语言是:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则:(1)AC=AB·AD;(2)BC=AB·BD;(3)CD = AD·BD;请你证明定理中的结论(1)AC = AB·AD.
(结论运用)
(2)如图2,正方形ABCD的边长为3,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,
①求证:△BOF∽△BED;
②若,求OF的长.
【答案】(1)见解析;(2)①见解析;②
【解析】
(1)证明△ACD∽△ABC,即可得证;
(2)①BC2=BOBD,BC2=BFBE,即BOBD=BFBE,即可求解;
②在Rt△BCE中,BC=3,BE=,利用△BOF∽△BED,即可求解.
解:(1)证明:如图1,∵CD⊥AB,
∴∠BDC=90°,
而∠A=∠A,∠ACB=90°,
∴△ACD∽△ABC,
∴AC:AB=AD:AC,
∴AC = AB·AD;
(2)①证明:如图2,
∵四边形ABCD为正方形,
∴OC⊥BO,∠BCD=90°,
∴BC2=BOBD,
∵CF⊥BE,
∴BC2=BFBE,
∴BOBD=BFBE,
即,而∠OBF=∠EBD,
∴△BOF∽△BED;
②∵在Rt△BCE中,BC=3,BE=,
∴CE=,
∴DE=BC-CE=2;
在Rt△OBC中,OB=BC=,
∵△BOF∽△BED,
∴,即,
∴OF=.
科目:初中数学 来源: 题型:
【题目】图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC中,AB=AC,∠A=36°,△ABC绕点B逆时针方向旋转一定角度后到△BDE的位置,点D落在边AC上
问:(1)旋转角是几度?为什么?
(2)将AB与DE的交点记为F,除△ABC和△BDE外,图中还有几个等腰三角形?写出图中所有的等腰三角形
(3)请选择题(2)中找到的一个等腰三角形说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一棵与地面垂直的笔直大树,在点处被大风折断后,部分倒下,树的顶端与斜坡上的点重合(都保持笔直),经测量,,则树高为_______米(保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过两点,与轴交于点.
(1)求此抛物线的解析式;
(2)已知点为轴上一点,点关于直线的对称点为.
①当点刚好落在第四象限的抛物线上时,求出点的坐标;
②点在抛物线上,连接,是否存在点,使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C为半径OB上一点,过点C作CD⊥AB,交上半圆于D,连接AD,将线段CD绕D点顺时针旋转90°到ED.
(1)如图1,当点E在⊙O上时,求证:CD=2OC;
(2)如图2,当tanA=时,连接OE,求sin∠EOC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为1的菱形,∠ABC=60°.动点P第1次从点A处开始,沿以B为圆心,AB为半径的圆弧运动到CB延长线,记为点P1;第2次从点P1开始,沿以C为圆心,CP1为半径的圆弧运动到DC的延长线,记为点P2;第3次从P2开始,沿以D为圆心,DP2为半径的圆弧运动到AD的延长线,记为点P3;第4次从点P3开始,沿以A为圆心,AP3为半径的圆弧运动到BA的延长线,记为点P4;…..如此运动下去,当点P运动到P20时,点P所运动的路程为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD=BC,∠A=∠B,E为AB的中点,连结CE,DE.
(1)求证:△ADE≌△BCE.
(2)若∠A=70°,∠BCE=60°,求∠CDE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校380名学生参加了这学期的“读书伴我行”活动,要求每人在这学期读书4~7本,活动结束后随机抽查了20名学生每人的读书量,并分为四种等级,:4本;:5本;:6本;:7本.将各等级的人数绘制成尚不完整的扇形图和条形图.
回答下列问题:
(1)补全条形图;这20名学生每人这学期读书量的众数是__________本,中位数是__________本;
(2)在求这20名学生这学期每人读书量的平均数时,小亮是这样计算的:
(本).
小亮的计算是否正确?如果正确,估计这380名学生在这学期共读书多少本;如果不正确,请你帮他计算出正确的平均数,并估计这380名学生在这学期共读书多少本;
(3)若A等级的四名学生中有男生、女生各两名,现从中随机选出两名学生写读书感想,请用画树状图的方法求出刚好选中一名男生、一名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com