精英家教网 > 初中数学 > 题目详情
11.将矩形ABCD沿对角线BD折叠,使得C与C′重合,若DC′=2,则AB=(  )
A.1B.2C.3D.4

分析 根据矩形的对边相等可得CD=AB,再根据翻折变换的性质可得C′D=CD,代入数据即可得解.

解答 解:在矩形ABCD中,CD=AB,
∵矩形ABCD沿对角线BD折叠后点C和点C′重合,
∴C′D=CD,
∴C′D=AB,
∵DC′=2,
∴AB=2.
故选:B.

点评 本题考查了矩形的对边相等的性质,翻折变换的性质,是基础题,熟记性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.下列各数中,绝对值最大的数是(  )
A.5B.-3C.0D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.“十一”期间,某商场进货单价为每件50元的T恤衫按60元售出,就能卖出400件,已知每件T恤衫涨价1元,其销售量就减少10件,规定试销时的销售单价不低于成本价,且获利又不得高于40%.
(1)求销售量y(件)与销售单价x(元)之间的函数关系式;
(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,当x取何值时,P的值最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:两个有一个公共顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.
(1)如图1,求证:BM=EM;
(2)如图2,将△ABC沿EC作轴对称变化,为如图2,且CB与CE在同一直线上,若CB=a,CE=2a,
①求证:MB∥CF;②求BM的长;
(3)如图3,当∠BCE=45°时,试探究BM与BE的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在矩形ABCD中,AB=1,BC=$\sqrt{3}$.将矩形ABCD绕点A逆时针旋转至矩形AB′C′D′,使得点B′恰好落在对角线BD上,连接DD′,则DD′的长度为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.(1)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为2$\sqrt{6}$.
(2)如图,矩形ABCD中,E.F分别是AD和CD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,则BC的长为2$\sqrt{2}$.
(3)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,BC=4,则DF的长为$\frac{\sqrt{17}-1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:
(1)四边形CFEG是矩形.
(2)AE=FG.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在矩形ABCD中,AB=12,AD=9,点E是边BC上一点,连接AE,BD相交于点F,连接DE,若sin∠DEC=$\frac{2\sqrt{5}}{5}$,则BF=$\frac{15}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若直线a∥b,a⊥c,则直线b⊥c.

查看答案和解析>>

同步练习册答案