精英家教网 > 初中数学 > 题目详情

【题目】如图为一段圆弧形弯道,弯道长12π米,圆弧所对的圆心角是81°.
(1)用直尺和圆规作出圆弧所在的圆心O;(不写作法,保留作图痕迹)
(2)求这段圆弧的半径R.

【答案】
(1)解:如图,点O即为所求点;


(2)解:根据题意得: =12π,

解得:R=

答:这段圆弧的半径为


【解析】(1)弧上任取三点A、B、C,连结AB、BC,分别作AB和BC的垂直平分线,两垂直平分线的交点为点O;(2)根据弧长公式列出关于R的方程,解之可得.
【考点精析】解答此题的关键在于理解垂径定理的相关知识,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,以及对圆心角、弧、弦的关系的理解,了解在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC中,∠BAC=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在6×8的网格图中,每个小正方形边长均为1,原点O和△ABC的顶点均为格点.

(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′与△ABC位似,且位似比为1:2;(保留作图痕迹,不要求写作法和证明)
(2)若点C和坐标为(2,4),则点A′的坐标为(),点C′的坐标为(),SA′B′C′:SABC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正五边形ABCDE,顶点A、B在半径为1的圆上,其它各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x= ,且经过点(2,0),下列说法: ①abc<0;
②a+b=0;
③4a+2b+c<0;
④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2
其中说法正确的是(

A.①②④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交交费(元)与用水量(吨)的函数关系如图所示。

(1)分别写出当时,的函数关系式;

(2)若某用户该月用水21吨,则应交水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC 中,AB=AC,∠BAC=90°,D BC 上一点,EC⊥BC,EC=BD,DF=FE.

求证:(1)△ABD≌△ACE;

(2)AFDE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.

(1)求点B的坐标;
(2)求直线BC的解析式;
(3)直线EF:y=2x﹣k(k≠0)交AB于E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使得SEBD=SFBD?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案