精英家教网 > 初中数学 > 题目详情
9.如果点A(-4,y1),B(-1,y2),C(3,y3)都在反比例函数$y=\frac{k}{x}(k<0)$的图象上,那么y1,y2,y3的大小关系是(  )
A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1

分析 先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.

解答 解:∵反比例函数$y=\frac{k}{x}(k<0)$中k<0,
∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大,
∵-4<0,-1<0,
∴点(-1,y1),(-2,y2)位于第二象限,
∴y1>0,y2>0,
∵0>-1>-4,
∴0<y1<y2
∵3>0,
∴点(3,y3)位于第四象限,
∴y3<0,
∴y3<y1<y2
故选B.

点评 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知:如图,在△ABC中,AB=AC,BE和CD是中线.
(1)求证:BE=CD.
(2)求$\frac{OE}{OB}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.定义[a,b,c]为函数y=ax2+bx+c的“特征数”.如:函数y=x2+3x-2的“特征数”是[1,3,-2],函数y=-x+4的“特征数”是[0,-1,4].如果将“特征数”是[2,0,4]的函数图象向下平移3个单位,得到一个新函数图象,那么这个新函数的解析式是y=2x2+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求二次函数的解析式;
(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;
(3)若直线与y轴的交点为E,连结AD、AE,求△ADE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:$\frac{{{x^2}+2x}}{x-1}•({1-\frac{1}{x}})$,其中x是不等式组$\left\{\begin{array}{l}x+4>0\\ 2x+5<1\end{array}$的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在实数范围内分解因式:x4-4x2+4=${{(x-\sqrt{2})}^{2}(x+\sqrt{2})}^{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,⊙O的圆心在坐标原点,半径为3.过A(-7,9),B(0,9)的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)与x轴交于D,E (点D在点E右边)两点,连结AD.
(1)若点D的坐标为D(3,0).
①请直接写出此时直线AD与⊙O的位置关系;
②求此时抛物线对应的函数关系式;
(2)若直线AD和⊙O相切,求抛物线二次项系数a的值;
(3)当直线AD和⊙O相交时,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.抛物线y=2x2向右平移3个单位长度,再向下平移5个单位长度,则平移后所得的抛物线的解析式为y=(x-3)2-5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.一个八边形的内角和是1080°.

查看答案和解析>>

同步练习册答案