精英家教网 > 初中数学 > 题目详情
17.如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求二次函数的解析式;
(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;
(3)若直线与y轴的交点为E,连结AD、AE,求△ADE的面积.

分析 (1)直接将已知点代入函数解析式求出即可;
(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x的取值范围;
(3)分别得出EO,AB的长,进而得出面积.

解答 解:(1)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),
根据题意得 $\left\{\begin{array}{l}{9a-3b+c=0}\\{a+b+c=0}\\{c=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-1}\\{b=-2}\\{c=3}\end{array}\right.$,
所以二次函数的解析式为:y=-x2-2x+3;

(2)如图,一次函数值大于二次函数值的x的取值范围是:x<-2或x>1.

(3)∵对称轴:x=-1.∴D(-2,3);
设直线BD:y=mx+n  代入B(1,0),D(-2,3):
$\left\{\begin{array}{l}{m+n=0}\\{-2m+n=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{m=-1}\\{n=1}\end{array}\right.$,
故直线BD的解析式为:y=-x+1,
把x=0代入求得E(0,1)
∴OE=1,
又∵AB=4
∴S△ADE=$\frac{1}{2}$×4×3-$\frac{1}{2}$×4×1=4.

点评 此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图所示,已知两条直线l1:y=2x+7,l2:y=2x+5,在l2上任取一点A,过点A作直线l1的垂线,垂足为B点,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在△ABC中,D、E分别是AB、BC的中点,AF⊥DE于F,若DE=4cm,AF=3cm,则△ABC的面积为$\frac{3}{2}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为(  )
A.y=$\frac{12}{x}$B.y=-$\frac{12}{x}$C.y=$\frac{15}{x}$D.y=-$\frac{15}{x}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若直线y=ax+b(a≠0)在第二、四象限都无图象,则抛物线y=ax2+bx+c(  )
A.开口向上,对称轴是y轴B.开口向下,对称轴平行于y轴
C.开口向上,对称轴平行于y轴D.开口向下,对称轴是y轴

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,则两次摸出的卡片的数字之和等于4的概率(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如果点A(-4,y1),B(-1,y2),C(3,y3)都在反比例函数$y=\frac{k}{x}(k<0)$的图象上,那么y1,y2,y3的大小关系是(  )
A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,点A(3,m)在双曲线$y=\frac{3}{x}$上,过点A作AC⊥x轴于点C,线段OA的垂直平分线交OC于点B,则△ABC的周长的值为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,二次函数y=x(x-2)(0≤x≤2)的图象,记为C1,它与x轴交于O、A1两点;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C2016.若P(4031,m)在第2016段图象C2016上,则m=1.

查看答案和解析>>

同步练习册答案