精英家教网 > 初中数学 > 题目详情
6.如图,点A(3,m)在双曲线$y=\frac{3}{x}$上,过点A作AC⊥x轴于点C,线段OA的垂直平分线交OC于点B,则△ABC的周长的值为(  )
A.6B.5C.4D.3

分析 先根据反比例函数图象上点的坐标特征求出m=1,得到OC=3,AC=1,再利用线段垂直平分线的性质得到AB=OB,然后把△ABC的周长化为OC+AC求解.

解答 解:∵点A(3,m)在双曲线$y=\frac{3}{x}$上,
∴3m=3,解得m=1,
即A(3,1),
∴OC=3,AC=1,
∵线段OA的垂直平分线交OC于点B,
∴AB=OB,
∴△ABC的周长=AB+BC+AC=OB+BC+AC=OC+AC=3+1=4.
故选C.

点评 本题考查了反比例函数图象上点的坐标特征:反比例函数y=$\frac{k}{x}$(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了线段垂直平分线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.下列说法正确的个数为(  )
①同位角相等;
②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;
③平面内经过一点有且只有一条直线与已知直线平行;
④若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求二次函数的解析式;
(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;
(3)若直线与y轴的交点为E,连结AD、AE,求△ADE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在实数范围内分解因式:x4-4x2+4=${{(x-\sqrt{2})}^{2}(x+\sqrt{2})}^{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,⊙O的圆心在坐标原点,半径为3.过A(-7,9),B(0,9)的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)与x轴交于D,E (点D在点E右边)两点,连结AD.
(1)若点D的坐标为D(3,0).
①请直接写出此时直线AD与⊙O的位置关系;
②求此时抛物线对应的函数关系式;
(2)若直线AD和⊙O相切,求抛物线二次项系数a的值;
(3)当直线AD和⊙O相交时,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在一个不透明的围棋盒子中有x颗白色棋子、y颗黑色棋子,它们除颜色外都一致,从盒子中随机取出一颗棋子,它中黑色棋子的概率为$\frac{2}{3}$;
(1)请写出y和x之间的函数关系式;
(2)现在往盒子中再放进5颗白色棋子和1颗黑色棋子,这时随机取出白色棋子的概率为$\frac{1}{2}$,请求出x和y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.抛物线y=2x2向右平移3个单位长度,再向下平移5个单位长度,则平移后所得的抛物线的解析式为y=(x-3)2-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.
(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.【他山之石】微博上,有这样一段内容:”如果人一生的时间用A4纸上900个大小一样的格子来表示,那么30年的光阴占其中的360个格子,我们将每个格子认真度过,且行且珍惜.”按这个说法,人的一生有多少年?请写出必要的计算过程;
【回看自我】今天距离中考约1000个小时.在这段时间里,我们的学习生活约200个小时,休息睡眠约300个小时,其余时间约500个小时,请绘制一个适当的统计图表示这些数据.

查看答案和解析>>

同步练习册答案