【题目】已知:△ABC为等边三角形
(1)若D为△ABC外一点,满足∠CDB=30,求证:
(2)若D为△ABC内一点,DC=3,DB=4,DA=5,求∠CDB的度数
(3)若D为△ABC内一点,DA=4,DB=,DC=则AB= (直接写出答案)
【答案】(1)详见解析;(2)150;(3)
【解析】
(1)以BD为边作等边△BDQ,易证△ABD≌△CBQ得AD=CQ再证∠CDQ=90得.
(2) 把△ACD绕点C顺时针旋转60°得到△BCQ,如图,连接DQ,根据旋转的性质得∠DCQ=60°,CD=CQ=3,QB=AD=5,则可判断△CDQ为等边三角形,所以DQ=4,∠BDE=60°,再利用勾股定理的逆定理证明△BDQ为直角三角形,∠QDB=90°,从而得到∠CDB=150°.
(3)同②可得∠ADB=150°,解构造30°直角三角形即可求出AB.
(1)证明:以BD为边作等边△BDQ,连接QC,
∵:△ABC、△BDQ都是等边三角形,
∴∠ABC=∠DBQ=∠BDQ=60°,BA=BC,BD=BQ,
∴∠ABD=∠CBQ,
在△ABD和△CBQ中
,
∴△ABD≌△CBQ(SAS),
∴AD=CQ
又∵∠CDB=30,
∴∠CDQ=90
∴
∴
(2)解: 把△ACD绕点C逆时针旋转60°得到△BCQ,如图,连接DQ,
∵△ABC为等边三角形,
∴BA=BC,∠ABC=60°,
∴∠QCD=60°,CD=CQ=3,QB=AD=5,
∴△CDQ为等边三角形,
∴DE=4,∠DQC=60°,
在△BDQ中,∵DQ=3,BD=4,BQ=5,
∴DQ2+BD2=BQ2,
∴△DEC为直角三角形,∠QDC=90°,
∴∠CDB=60°+90°=150°.
(3)AB=
解:把△ACD绕点A逆时针旋转60°得到△BCQ,如图,连接DQ,
同可得②BQ= DC=,AD=AQ=DQ=4,DB=,
∴DQ2+BD2=BQ2,∠ADB=150°,
过B点作BH垂直AD,交AD延长线于H,
∴∠BDH=30°,
∴BH=BD=,DH=3,
∴AH=AD+DH=3+4=7,
∴AB===
故答案为:
科目:初中数学 来源: 题型:
【题目】如图,把矩形纸片ABCD沿EF翻折,点A恰好落在BC边的A′处,若AB= ,∠EFA=60°,则四边形A′B′EF的周长是( )
A. 1+3 B. 3+ C. 4+ D. 5+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.
(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.
下面是两位学生有代表性的证明思路:
思路1:不需作辅助线,直接证三角形全等;
思路2:不证三角形全等,连接BD交AF于点H.…
请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);
(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;
(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一个四边形纸片ABCD,∠B=∠D=,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.
(1)试判断B′E与DC的位置关系;并说明理由.
(2)如果∠C=,求∠AEB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为坐标原点,点A(1,5)和点B(m,1)均在反比例函数y=图象上.
(1)求m,k的值;
(2)设直线AB与x轴交于点C,求△AOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD与BC平行吗?试写出推理过程;
(2)求∠DAC和∠EAD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线,其中是常数,该抛物线的对称轴为直线.
()求该抛物线的函数解析式.
()把该抛物线沿轴向上平移多少个单位后,得到的抛物线与轴只有一个公共点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com