精英家教网 > 初中数学 > 题目详情

【题目】阅读材料,请回答下列问题

材料一:我国古代数学家秦九韶在《数书九章》中记述了三斜求积术,即已知三角形的三边长,求它的面积.用现代式子表示即为:S①(其中abc为三角形的三边长,S为面积)而另一个文明古国古希腊也有求三角形面积的海伦公式S……②(其中p

材料二:对于平方差公式:a2b2=(a+b)(ab

公式逆用可得:(a+b)(ab)=a2b2

例:a2﹣(b+c2=(a+b+c)(abc

1)若已知三角形的三边长分别为345,请试分别运用公式①和公式②,计算该三角形的面积;

2)你能否由公式①推导出公式②?请试试.

【答案】1)三角形的面积为6;(2)见解析.

【解析】

1)根据材料,代入公式即可求解;

2)根据平方差公式和完全平方公式即可推导.

解:(1)设a3b4c5

∵32+42255225

∴a2+b2c2

a2b2144

∴S6

∵p6

pa633pb642pc651

S

6

∴三角形的面积为6

2[a2b2﹣(2]

[]

[a+b2c2][c2﹣(ab2]

a+b+c)(a+bc)(a+cb)(b+ca

×2p2p2c)(2p2b)(2p2a

ppa)(pb)(pc

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们约定:对角线互相垂直的凸四边形叫做“正垂形”.

(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“正垂形”的有   

②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形   “正垂形”.(填“是”或“不是”)

(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,当≤OE≤时,求AC2+BD2的取值范围;

(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“正垂形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4试直接写出满足下列三个条件的抛物线的解析式;

; ②; ③“正垂形”ABCD的周长为12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小正方形的边长为1,格点△ABC(顶点在网格线的交点上)的顶点A、C的坐标分别为A(﹣3,4)C(0,2)

(1)请在网格所在的平面内建立平面直角坐标系,并写出点B的坐标;

(2)画出△ABC关于原点对称的图形△A1B1C1

(3)求△ABC的面积;

(4)在x轴上存在一点P,使PA+PB的值最小,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.

(1)求证:△ABC≌△ADE;

(2)求∠FAE的度数;

(3)求证:CD=2BF+DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆假期期间,某单位8名领导和320名员工集体外出进行素质拓展活动,准备租用45座大车或30座小车.若租用2辆大车3辆小车共需租车费1700元;若租用3辆大车2辆小车共需租车费1800

1)求大、小车每辆的租车费各是多少元?

2)若每辆车上至少要有一名领导,每个人均有座位,且总租车费用不超过3100元,求最省钱的租车方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售某种品牌的手机,每部进货价为2500.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4.

(1)当售价为2800元时,这种手机平均每天的销售利润达到多少元?

(2)若设每部手机降低x,每天的销售利润为y,试写出yx之间的函数关系式.

(3)商场要想获得最大利润,每部手机的售价应订为为多少元?此时的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,点PCD的中点,∠BCD=60°,射线APBC的延长线于点E,射线BPDE于点K,点O是线段BK的中点.

1)求证:△ADP≌△ECP

2)若BP=nPK,试求出n的值;

3)作BMAE于点M,作KNAE于点N,连结MONO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xoy中,点Mx轴的正半轴上,Mx轴于A、B两点,交y轴于C、D两点,且C为AE的中点,AEy轴于G点,若点A的坐标为(-1,0),AE=4

(1)求点C的坐标;

(2)连接MG、BC,求证:MGBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球,其数字记为q,则p,q使关于x的方程x2+px+q=0有实数根的概率是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案