【题目】如图,△OAB中,OA=OB=10cm,∠AOB=80°,以点O为圆心,半径为6cm的优弧分别交OA、OB于点M、N.
(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;
(2)点T在左半弧上,若AT与圆弧相切,求AT的长.
(3)Q为优弧上一点,当△AOQ面积最大时,请直接写出∠BOQ的度数为 .
【答案】(1)证明见解析;(2)AT=8;(3)170°或者10°.
【解析】
(1)欲证明AP=BP′,只要证明△AOP≌△BOP′即可;
(2)在Rt△ATO中,利用勾股定理计算即可;
(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.
解:(1)证明:∵∠AOB=∠POP′=80°
∴∠AOB+∠BOP=∠POP′+∠BOP即∠AOP=∠BOP′
在△AOP与△BOP′中
,
∴△AOP≌△BOP′(SAS),
∴AP=BP′;
(2)∵AT与弧相切,连结OT,
∴OT⊥AT
在Rt△AOT中,根据勾股定理,
AT=
∵OA=10,OT=6,
∴AT=8;
(3)解:如图,当OQ⊥OA时,△AOQ的面积最大;
理由是:
当Q点在优弧MN左侧上,
∵OQ⊥OA,
∴QO是△AOQ中最长的高,则△AOQ的面积最大,
∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,
当Q点在优弧MN右侧上,
∵OQ⊥OA,
∴QO是△AOQ中最长的高,则△AOQ的面积最大,
∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,
综上所述:当∠BOQ的度数为10°或170°时,△AOQ的面积最大.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:① abc>0;② 2a+b=0;③ 当m≠1时,a+b>am2+bm;④ a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2,
其中正确的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:
①;②;③.其中正确的是( )
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数(x>0)的图象经过点A,B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.
(1)求△OCD的面积;
(2)当BE=AC时,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.
(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.
解题思路:将△ABD绕点A逆时针旋转60°得到△ACE,可得AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则 ∠ACE+∠ACD=180°,易知△ADE是等边三角形,所以AD=DE,从而解决问题.
根据上述解题思路,三条线段DA、DB、DC之间的等量关系是___________;
(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2, 其中结论正确的是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学问题:如何计算平面直角坐标系中任意两点之间的距离?
探究问题:
为解决上面的问题,我们从最简单的问题进行研究.
探究一:在图1中,已知线段AB,A(﹣2,0),B(0,3),写出线段AO的长,BO的长,所以线段AB的长为多少;把Rt△AOB向右平移3个单位,再向上平移2个单位,得到Rt△CDE,写出Rt△CDE的顶点坐标C,D,E,此时线段CD的长为多少,DE的长为多少,所以线段CE的长为多少.
探究二:在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB的长(用含a,b,c,d的代数式表示,不必证明).
归纳总结:无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(x1,y1),B(x2,y2)时线段AB的长为多少(用含x1,y1,x2,y2的代数式表示,不必证明).
拓展与应用:
运用在图3中,一次函数y=﹣x+3与反比例函数y=的图象交点为A、B,交点的坐标分别是A(1,2),B(2,1).
①求线段AB的长;
②若点P是x轴上动点,求PA+PB的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,由边长为1的小正方形构成的网格中,每个小正方形的顶点叫做格点,的顶点在格点上.
(1)直接写出的面积为 ;
(2)请用无刻度的直尺画出将绕点顺时针旋转角后得到的线段,并写出点的坐标为 ;
(3)若一个多边形各点都不在⊙M外,则称⊙M全覆盖这个5多边形,已知点,⊙M全覆盖四边形,则⊙M的直径最小为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com