【题目】如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d(∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.
(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)= ,d(∠xOy,B)= .
(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.
(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).
①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;
②在图4中,抛物线y=-x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.
【答案】(1)5,5;(2)点P运动所形成的图形是线段y=5-x(0≤x≤5).(3);点Q的坐标为(4,).
【解析】
试题分析:(1)首先根据点A(5,0)到x轴的距离是0,到y轴的距离是5,可得d(∠xOy,A)=0+5=5;然后根据点B(3,2)到x轴的距离是2,到y轴的距离是3,求出d(∠xOy,B)的值是多少即可.
(2)首先设点P的坐标是(x,y),然后根据d(∠xOy,P)=5,可得x+y=5,据此求出点P运动所形成的图形即可.
(3)①首先作CE⊥OT于点E,CF⊥x轴于点F,延长FC交OT于点H,则CF=1,然后设直线OT对应的函
数关系式为y=x(x≥0),求出点H的坐标为H(4,),进而求出CH,OH的值各是多少;最后根据相似三角形判定的方法,判断出△HEC∽△HFO,即可判断出,据此求出EC的值,即可求出d(∠xOT,C)的值是多少.
②首先作QG⊥OT于点G,QH⊥x轴于点H,交OT于点K,设点Q的坐标为(m,n),其中3≤m≤5,则n
=-m2+2m+,然后判断出点K的坐标,以及HK,OK的大小,再判断出Rt△QGK∽Rt△OHK,即可判断出,据此求出QG=;最后求出d(∠xOT,Q)的值,根据二次函数最值的求法,求出当d(∠xOT,Q)取最大值时点Q 的坐标即可.
试题解析:(1)∵点A(5,0)到x轴的距离是0,到y轴的距离是5,
∴d(∠xOy,A)=0+5=5,
∵点B(3,2)到x轴的距离是2,到y轴的距离是3,
∴d(∠xOy,B)=2+3=5.
综上,可得d(∠xOy,A)=5,d(∠xOy,B)=5.
(2)设点P的坐标是(x,y),
∵d(∠xOy,P)=5,
∴x+y=5,
∴点P运动所形成的图形是线段y=5-x(0≤x≤5).
(3)①如图3,作CE⊥OT于点E,CF⊥x轴于点F,延长FC交OT于点H,则CF=1,
∵直线OT对应的函数关系式为y=x(x≥0),
∴点H的坐标为H(4,),
∴CH=1=,OH=
∵CE⊥OT,
∴∠OHF+∠HCE=90°,
又∵∠OHF+∠HOF=90°,
∴∠HCE=∠HOF,
在△HEC和△HFO中,
∴△HEC∽△HFO,
∴,
即
∴EC=,
∴d(∠xOT,C)=+1=
②如图4,作QG⊥OT于点G,QH⊥x轴于点H,交OT于点K,
设点Q的坐标为(m,n),其中3≤m≤5,
则n=-m2+2m+,
∴点K的坐标为(m,m),QK=mn,
∴HK=m,OK=m.
∵Rt△QGK∽Rt△OHK,
∴,
∴QG=,
∴d(∠xOT,Q)=QG+QH
=+n
=m+n
=m+(-m2+2m+)
=-m2+m+1
=(m-4)2+
∵3≤m≤5,
∴当m=4时,d(∠AOB,Q)取得最大值.
此时,点Q的坐标为(4,).
科目:初中数学 来源: 题型:
【题目】校车安全是近几年社会关注的热门话题,其中超载和超速行驶是校车事故的主要原因.小亮和同学尝试用自己所学的三角函数知识检测校车是否超速,如下图,观测点设在到白田路的距离为100米的点P处.这时,一辆校车由西向东匀速行驶,测得此校车从A处行驶到B处所用的时间为4秒,且∠APO=60°,∠BPO =45°.
(1)求A、B之间的路程;(参考数据: , )
(2)请判断此校车是否超过了白田路每小时60千米的限制速度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市居民使用自来水按如下标准收费(水费按月缴纳):
户月用水量 | 单价 |
不超过12 m3的部分 | a元∕m3 |
超过12 m3但不超过20 m3的部分 | 1.5a元∕m3 |
超过20 m3的部分 | 2a元∕m3 |
(1) 当a=2时,某用户一个月用了28 m3水,求该用户这个月应缴纳的水费;
(2) 设某户月用水量为n 立方米,当n>20时,则该用户应缴纳的水费_____________元(用含a、n的整式表示);
(3) 当a=2时,甲、乙两用户一个月共用水40 m3,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3,,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,马路的两边CF,DE互相平行,线段CD为人行横道,马路两侧的A,B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路的两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD与AB之间的距离;
(2)某人从车站A出发,沿折线A→D→C→B去超市B.求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米.
(参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2017年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.
(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?
(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上两点分别表示有理数2和5,我们用来表示两点之间的距离.
(1)直接写出的值=______;
(2)若数轴上一点表示有理数m,则的值是______;
(3)当代数式∣n +2∣+∣n 5∣的值取最小值时,写出表示n的点所在的位置;
(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:
(1)旋转中心是什么?
(2)若旋转角为45°,边CD与A′D′交于F,求DF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,
(1)随机从A组抽取一张,求抽到数字为2的概率;
(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com