【题目】如图,已知四边形ABCD中,∠D=∠B=90°.
(1)填空:∠DAB+∠BCD= °;
(2)若AE平分∠DAB,CF平分∠BCD,求证:AE∥CF.
【答案】(1)180;(2)见详解.
【解析】
(1)根据四边形的内角和等于360°解答即可;
(2)由角平分线的定义得∠DAE+∠DCF =(∠DAB+∠DCB),从而得∠DAE+∠DCF=90°,由直角三角形的性质得∠DFC+∠DCF=90°,进而得∠DAE=∠DFC,即可得到结论.
(1)∵四边形ABCD中,∠D=∠B=90°,
∴∠DAB+∠BCD=360°90°90°=180°,
故答案为:180;
(2)∵AE平分∠DAB,CF平分∠BCD,
∴∠DAE=∠DAB,∠DCF=∠DCB,
∴∠DAE+∠DCF=∠DAB+∠DCB=(∠DAB+∠DCB),
∵∠DAB+∠DCB=180°,
∴∠DAE+∠DCF=90°,
∵∠D=90°,
∴∠DFC+∠DCF=90°,
∴∠DAE=∠DFC,
∴AE∥CF.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.
(1)求证:四边形AEFD是矩形;
(2)若AC=4,∠ABC=60°,求矩形AEFD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某位老师在讲“实数”时,画了一个图,即“以数轴的单位长线段为边作一个正方形,然后以原点为圆心,正方形的对角线长为半径画弧交数轴于一点”,作这样的图用来说明:
作图:请你在数轴上找出对应的点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B在一直线上,小明从点A出发沿AB方向匀速前进,4秒后走到点D,此时他(CD)在某一灯光下的影长为AD,继续沿AB方向以同样的速度匀速前进4秒后到点F,此时他(EF)的影长为2米,然后他再沿AB方向以同样的速度匀速前进2秒后达点H,此时他(GH)处于灯光正下方.
(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);
(2)求小明沿AB方向匀速前进的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的,设人行通道的宽度为x千米,则下列方程正确的是( )
A.(2-3x)(1-2x)=1B.(2-3x)(1-2x)=1
C.(2-3x)(1-2x)=1D.(2-3x)(1-2x)=2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图:点(1,3)在函数y=(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数y=(x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:
(1)求k的值;
(2)求点A的坐标;(用含m代数式表示)
(3)当∠ABD=45°时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形的边在轴上,边在轴上.把沿折叠得到,与交于点.
(1)如图1,求证:.
(2)如图1,若,.写出所在直线的解析式.
(3)如图2,在(2)的条件下,是中点,是直线上一动点,是否有最小值,若有请求出最小值,若没有请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com