【题目】如图,菱形ABCD中,AE⊥BC于点E,∠BAE=30°,AD=4cm.
(1)求菱形ABCD的各角的度数;
(2)求AE的长.
【答案】⑴菱形各角的度数为60°、120°、60°、120°;⑵AE的长为cm
【解析】
(1)由AE⊥BC,得∠AEB=90°,根据三角形的内角和即可求出∠B=60°,
根据菱形的对角相等,邻角互补即可求解.
(2)根据菱形的四条边相等得到AB=AD=4,因为∠BAE=30°,所以BE=2cm,利用勾股定理即可求出AE的长.
⑴ ∵AE⊥BC
∴∠AEB=90°
∵∠BAE=30°
∴∠B=60°
∵菱形ABCD
∴∠D=∠B=60°,AB∥CD
∴∠BAD=∠C=120°
答:菱形各角的度数为60°、120°、60°、120°
⑵ ∵菱形ABCD
∴AB=AD=4
∵∠BAE=30°
∴BE=2
∴AE=
答:AE的长为cm
科目:初中数学 来源: 题型:
【题目】一个正方形在平面直角坐标系内的位置如图所示,已知点 A 的坐标为(3,0),线段 AC与 BD 的交点是 M.
(1)写出点 M、B、C、D 的坐标;
(2)当正方形中的点 M 由现在的位置经过平移后,得到点 M(﹣4,6)时,写出点 A、B、
C、D 的对应点 A′、B′、C′、D′的坐标,并求出四边形 A′B′C′D′的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.
(1)指出旋转中心,并求出旋转的度数;
(2)求出∠BAE的度数和AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC= ,则点B的坐标为( ).
A.( ,1)
B.(1, )
C.( ,1)
D.(1, )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了改善办学条件,计划购置一电子白板和一批笔记本电脑,经投标,购买一块电子白板比买三台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.
(1)求购买一块电子白板和一台笔记本电脑各需多少元?
(2)根据该校实际情况需购买电子白板和笔记本电脑的总数为396台,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在平面直角坐标系中,点A(o,m),点B(n,0),m, n满足.
(1)求A,B的坐标.
(2)如图1, E为第二象限内直线AB上的一点,且满足,求点E的横坐标.
(3)如图2,平移线段BA至OC, B与O是对应点,A与C是对应点,连接AC, E为BA的延长线上一点,连接EO, OF平分∠COE, AF平分∠EAC, OF交AF于点F,若∠ABO+∠OEB=α,请在图2中将图形补充完整,并求∠F (用含α的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知有理数﹣3,1.
(1)在如图所示的数轴上,分别用A,B表示出﹣3,1这两个点;
(2)若|m|=2,数轴上表示m的点介于点A,B之间;在点A右侧且到点B距离为5的点表示的数为n.解关于x的不等式mx+4<n,并把解集表示在如图所示的数轴上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com