【题目】四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
【答案】D
【解析】
四边形ABCD中,已经具备AD∥BC,再根据选项,选择条件,推出AB∥CD即可,只有D选项符合.
解:A、如图1,∵AD∥BC,
∴∠A+∠B=180°,
如果∠A+∠C=180°,
则可得:∠B=∠C,
这样的四边形是等腰梯形,不是平行四边形,故此选项错误;
B、如图1,∵AD∥BC,
∴∠A+∠B=180°,
如果∠B+∠D=180°,
则可得:∠A=∠D,
这样的四边形是等腰梯形,不是平行四边形,故此选项错误;
C、如图1,∵AD∥BC,
∴∠A+∠B=180°,
再加上条件∠A+∠B=180°,
也证不出四边形ABCD是平行四边形,故此选项错误;
D、如图2,
∵∠A+∠D=180°,
∴AB∥CD,
∵AD∥BC,
∴四边形ABCD是平行四边形,故此选项正确;
故选:D.
科目:初中数学 来源: 题型:
【题目】完成下面证明:
(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b.
证明:∵a⊥c (已知)
∴∠1= (垂直定义)
∵b∥c (已知)
∴∠1=∠2 ( )
∴∠2=∠1=90° ( )
∴a⊥b ( )
(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE.
证明:∵AB∥CD (已知)
∴∠B= ( )
∵∠B+∠D=180° (已知)
∴∠C+∠D=180° ( )
∴CB∥DE ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0.
(1)当t=3时,解这个方程;
(2)若m,n是方程的两个实数根,设Q=(m﹣2)(n﹣2),试求Q的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x、y的方程组 (a≥0),给出下列说法:
①当a=1时,方程组的解也是方程x+y=2的一个解;
②当x﹣2y>8时,a> ;
③不论a取什么实数,2x+y的值始终不变;
④某直角三角形的两条直角边长分别为x+y,x﹣y,则其面积最大值为 .
以上说法正确的是( )
A.②③
B.①②④
C.③④
D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )
A.9天
B.11天
C.13天
D.22天
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了将十堰打造成区域中心城市,实现跨越式发展,我市郧阳区建设正按投资计划有序推进.因道路建设需要开挖土石方,计划每小时挖掘土石方270m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:
租金(单位:元/台时) | 挖掘土石方量(单位:m3/台时) | |
甲型挖掘机 | 200 | 30 |
乙型挖掘机 | 260 | 40 |
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过1780元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com