【题目】已知关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0.
(1)当t=3时,解这个方程;
(2)若m,n是方程的两个实数根,设Q=(m﹣2)(n﹣2),试求Q的最小值.
【答案】(1)x1=3﹣,x2=3+;(2)Q的最小值是﹣1.
【解析】
(1)把t=3代入x2﹣2tx+t2﹣2t+4=0,再利用公式法即可求出答案;
(2)由根与系数的关系可得出m+n=2t、mn=t2﹣2t+4,将其代入(m﹣2)(n﹣2)=mn﹣2(m+n)+4中可得出(m﹣2)(n﹣2)=(t﹣3)2﹣1,由方程有两个实数根结合根的判别式可求出t的取值范围,再根据二次函数的性质即可得出(m﹣2)(n﹣2)的最小值.
(1)当t=3时,原方程即为x2﹣6x+7=0,
,
解得,;
(2)∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,
∴m+n=2t,mn=t2﹣2t+4,
∴(m﹣2)(n﹣2)=mn﹣2(m+n)+4=t2﹣6t+8=(t﹣3)2﹣1.
∵方程有两个实数根,
∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,
∴t≥2,
∴(t﹣3)2﹣1≥(3﹣3)2﹣1=﹣1.
故Q的最小值是﹣1.
科目:初中数学 来源: 题型:
【题目】菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC= ,则点B的坐标为( ).
A.( ,1)
B.(1, )
C.( ,1)
D.(1, )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在平面直角坐标系中,点A(o,m),点B(n,0),m, n满足.
(1)求A,B的坐标.
(2)如图1, E为第二象限内直线AB上的一点,且满足,求点E的横坐标.
(3)如图2,平移线段BA至OC, B与O是对应点,A与C是对应点,连接AC, E为BA的延长线上一点,连接EO, OF平分∠COE, AF平分∠EAC, OF交AF于点F,若∠ABO+∠OEB=α,请在图2中将图形补充完整,并求∠F (用含α的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,E是BC延长线上一点,AE交CD于点G,F是AE上一点,并且AC=CF=EF,∠AEB=15°.
(1)求∠ACF的度数;
(2)证明:矩形ABCD为正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC=18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.在这种情况下请你解决以下问题:
(1)从运动开始,当t取何值时,四边形PQBA是矩形;
(2)在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由;
(3)在整个运动过程中是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com