【题目】为了将十堰打造成区域中心城市,实现跨越式发展,我市郧阳区建设正按投资计划有序推进.因道路建设需要开挖土石方,计划每小时挖掘土石方270m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:
租金(单位:元/台时) | 挖掘土石方量(单位:m3/台时) | |
甲型挖掘机 | 200 | 30 |
乙型挖掘机 | 260 | 40 |
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过1780元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知有理数﹣3,1.
(1)在如图所示的数轴上,分别用A,B表示出﹣3,1这两个点;
(2)若|m|=2,数轴上表示m的点介于点A,B之间;在点A右侧且到点B距离为5的点表示的数为n.解关于x的不等式mx+4<n,并把解集表示在如图所示的数轴上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年4月29日在瑞安外滩举行了“微马”活动,本次活动分“微马组,体验跑组,欢乐家庭跑组”三种赛程,其中“欢乐家庭跑组”蔡塞家庭只能以“二大一小”或“一大一小”的形式参加,参赛人数共100人.
(1)若参加“欢乐家庭跑组”的大人人数是小孩人数的1.5倍,问:“二大一小”和“一大一小”的组数分别有几组?
(2)若“二大一小”和“一大一小”的组数不相同且相差不超过5组,则本次比赛中参加 “欢乐家庭跑组”共有 组(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC=18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.在这种情况下请你解决以下问题:
(1)从运动开始,当t取何值时,四边形PQBA是矩形;
(2)在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由;
(3)在整个运动过程中是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学兴趣小组活动中,小明利用“同弧所对的圆周角及圆心角的性质”探索了一些问题,下面请你和小明一起进入探索之旅.
问题情境:
(1)如图1,在△ABC中,∠A=30°,BC=2,则△ABC的外接圆的半径为 .
操作实践:
(2)如图2,在矩形ABCD中,请利用以上操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)
迁移应用:
(3)如图3,在平面直角坐标系的第一象限内有一点B,坐标为(2,m).过点B作AB⊥y轴,BC⊥x轴,垂足分别为A、C,若点P在线段AB上滑动(点P可以与点A、B重合),发现使得∠OPC=45°的位置有两个,则m的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点E在AC上,∠AEB=∠ABC.
(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;
(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:
①旋转角的度数;
②线段OD的长;
③∠BDC的度数.
(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠D应分别是20°和30°.
(1)李叔叔量得∠BCD=142°,根据李叔叔量得的结果,你能断定这个零件是否合格?请解释你的结论.
(2)你知道∠B、∠D、∠BCD三角之间有何关系吗?请写出你的结论(不需说明理由).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com