精英家教网 > 初中数学 > 题目详情

【题目】(1)在下列横线上用含有a,b的代数式表示相应图形的面积.

①a2;②____________. b2 _________________.

(2)请在图④画出拼图并通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表达:       

(3)利用(2)的结论计算10.232+20.46×9.77+9.772的值.

【答案】(1)2ab、(a+b)2;(2)a2+2ab+b2=(a+b)2;(3)10.232+20.46×9.77+9.772=(10.23+9.77)2=400.

【解析】

(1)根据正方形、长方形面积公式即可解答;

(2)前三个图形的面积之和等于第四个正方形的面积;

(3)借助于完全平方公式解答即可.

(1)a2、2ab、b2、(a+b)2

(2)a2+2ab+b2=(a+b)2


(3)10.232+20.46×9.77+9.772=(19+1)2=400.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.

(1)求旋转角的度数;
(2)求点P与点P′之间的距离;
(3)求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作图的切线。
已知:P为圆O外一点。
求作:经过点P的圆O的切线。

小敏的作法如下:
①连接OP,作线段OP的垂直平分线MN交OP于点C;
②以点C为圆心,CO的长为半径作圆交圆O于A、B两点;
③作直线PA、PB,所以直线PA、PB就是所求作的切线。

老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》中记载了这样一道题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代的语言表述为:“如果AB为⊙O的直径,弦CD⊥AB于E,AE=1寸,CD=10寸,那么直径AB的长为多少寸?”请你补全示意图,并求出AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点F为弦AC的中点,连接OF并延长交⊙O于点D,过点D作⊙O的切线,交BA的延长线于点E.

(1)求证:AC∥DE;
(2)若OA=AE=4,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:(1)(2x2+x﹣1)﹣[4x2+(5﹣x2+x)],其中x=﹣3.

(2)已知A=5x2﹣2xy﹣2y2,B=x2﹣2xy﹣y2,其中x=,y=﹣,求A﹣B的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂车间共有10名工人,调查每个工人的日均生产能力,获得数据制成如下统计图.

(1)求这10名工人的日均生产件数的平均数、众数、中位数;

(2)若要使占60%的工人都能完成任务,应选什么统计量(平均数、中位数、众数)做日生产件数的定额?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如表:

x

﹣2

﹣1

0

1

2

3

y

0

4

6

6

4

0


(1)求这个二次函数的表达式;
(2)直接写出当y<0时x的取值范围.

查看答案和解析>>

同步练习册答案