精英家教网 > 初中数学 > 题目详情

【题目】若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.

【答案】
(1)解:设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,

当a=2,h=3,k=4时,

二次函数的关系式为y=2(x﹣3)2+4.

∵2>0,

∴该二次函数图象的开口向上.

当a=3,h=3,k=4时,

二次函数的关系式为y=3(x﹣3)2+4.

∵3>0,

∴该二次函数图象的开口向上.

∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,

∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.

∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4


(2)解:∵y1的图象经过点A(1,1),

∴2×12﹣4×m×1+2m2+1=1.

整理得:m2﹣2m+1=0.

解得:m1=m2=1.

∴y1=2x2﹣4x+3

=2(x﹣1)2+1.

∴y1+y2=2x2﹣4x+3+ax2+bx+5

=(a+2)x2+(b﹣4)x+8

∵y1+y2与y1为“同簇二次函数”,

∴y1+y2=(a+2)(x﹣1)2+1

=(a+2)x2﹣2(a+2)x+(a+2)+1.

其中a+2>0,即a>﹣2.

解得:

∴函数y2的表达式为:y2=5x2﹣10x+5.

∴y2=5x2﹣10x+5

=5(x﹣1)2

∴函数y2的图象的对称轴为x=1.

∵5>0,

∴函数y2的图象开口向上.

①当0≤x≤1时,∵函数y2的图象开口向上,

∴y2随x的增大而减小,

∴当x=0时,y2取最大值,最大值为5×(0﹣1)2=5,

②当1≤x≤3时,∵函数y2的图象开口向上,

∴y2随x的增大而增大,

∴当x=3时,y2取最大值,

最大值为5(3﹣1)2=20.

综上所述:当0≤x≤3时,y2的最大值为20


【解析】(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.
【考点精析】通过灵活运用二次函数的性质和二次函数的最值,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:
①四边形ABCD是菱形;
②四边形ABCD是中心对称图形;
③四边形ABCD是轴对称图形;
④AC=BD.
其中正确的是(写上正确的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度d与时间t的函数关系的图象可能是( )


A.①
B.③
C.①或③
D.②或④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示.

(1)求这个二次函数的解析式;
(2)根据图象,写出当x取何值时,y>0?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等边△ABC内的一点,且PA=5,PB=4,PC=3,将△APB绕点B逆时针旋转,得到△CQB.求:

(1)点P与点Q之间的距离;
(2)求∠BPC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.

(1)求证:OE=OF;

(2)求∠ACB的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)在下列横线上用含有a,b的代数式表示相应图形的面积.

①a2;②____________. b2 _________________.

(2)请在图④画出拼图并通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表达:       

(3)利用(2)的结论计算10.232+20.46×9.77+9.772的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结合数轴与绝对值的知识回答下列问题:

(1)数轴上表示41的两点之间的距离为|4﹣1|=   ;表示5和﹣2两点之间的距离为|5﹣(﹣2)|=|5+2|=   ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=   

(2)若数轴上表示数a的点位于﹣42之间,求|a+4|+|a﹣2|的值;

(3)当a=   时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=-x,点A1的坐标为(-3,0).过点A1x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,则点A3的坐标为________,按此作法进行下去,点A2017的坐标为__________

查看答案和解析>>

同步练习册答案