精英家教网 > 初中数学 > 题目详情

【题目】已知是圆的两条弦,,连接,过点,垂足为.

1)如图1,连接,求证:

2)如图2,连接并延长交于点,若平分,求圆的半径和的长.

【答案】1)见解析;(2)圆O的半径2.5

【解析】

1)连接BC,如图,根据已知条件易得∠D=ABG,进而利用全等三角形的判定定理证明△BCE≌△BGE,接下来根据全等三角形的性质,利用线段垂直平分线的性质即可证得结论;

2)连接CO并延长交⊙OM,连接AM,可得,由已知AG=4,可得AMAC的值,根据勾股定理求出CM,即可得圆O的半径;过点HHNAB,过点OOPAB,如图,联系三角函数的知识、角平分线的性质及勾股定理进行推理,即可求出AH的长.

连接

.

.

2)如图,连接并延长交,连接

是圆的直径,

.

.

中,

的半径为

,可得

.

中,

,则

平分

.

中,

中,

,则.

.

故答案为:(1)见解析;(2)圆O的半径2.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4AD6EAB边的中点,F是线段BC上的动点,将EBF沿EF所在直线折叠得到EBF,连接BD,则BD的最小值是(  )

A. 22B. 6C. 22D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个不相等的实数根,

(1)求m的取值范围;

(2)若x=1是方程的一个根,求m的值和另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以为圆心,任意长为半径画弧分别交于点,再分别以为圆心,大于 的长为半径画弧,两弧交于点,连结并延长交于点,则下列说法中正确的个数是()

①点的两边距离相等;

②点的中垂线上;

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要在宽为22米的大道两边安装路灯,路灯的灯臂CD2米,且与灯柱BC120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,求路灯的灯柱BC高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距(米),甲行走的时间为(分),关于的函数函数图像的一部分如图所示.

(1)求甲行走的速度;

(2)在坐标系中,补画关于函数图象的其余部分;

(3)问甲、乙两人何时相距360米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.

(1)求反比例函数的解析式;

(2)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与反比例函数(k>0)的图像交于A,B两点,过点Ax轴的垂线,垂足为M,△AOM面积为1.

(1)求反比例函数的解析式;

(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.

查看答案和解析>>

同步练习册答案