【题目】如图,C是的一定点,D是弦AB上的一定点,P是弦CB上的一动点.连接DP,将线段PD绕点P顺时针旋转得到线段.射线与交于点Q.已知,设P,C两点间的距离为xcm,P,D两点间的距离,P,Q两点的距离为.
小石根据学习函数的经验,分别对函数,,随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了,,与x的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
/cm | 4.29 | 3.33 | 1.65 | 1.22 | 1.50 | 2.24 | |
/cm | 0.88 | 2.84 | 3.57 | 4.04 | 4.17 | 3.20 | 0.98 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数据所对应的点,,并画出函数,的图象;
(3)结合函数图象,解决问题:连接DQ,当△DPQ为等腰三角形时,PC的长度约为_____cm.(结果保留一位小数)
【答案】(1)2.36;(2)见解析;(3)1.26或5.84
【解析】
(1)测量出PC=2cm时,PD的值,填入表格即可即可;
(2)根据表格数据描点,圆平滑曲线连接即可;
(3)由△DPQ是等腰三角形可得PD=PQ,即y1=y2,根据图象找出两个图象的交点,即可得x的值,即PC的大约长度.
(1)经过测量,当PC=2cm时,PD=2.36cm,
故答案为:2.36
(2)函数y1、y2的图象如图所示:
(3)∵△DPQ是等腰三角形,
∴PD=PQ,即y1=y2,
由图象可知:y1=y2时,x≈1.26或x≈5.84,
∴PC的长度约为1.26cm或5.84cm,
故答案为:1.26或5.84
科目:初中数学 来源: 题型:
【题目】斗门某养殖户每年的养殖成本包括固定成本和可变动成本,其中固定成本每年均为4万元,可变动成本逐年增长. 已知该养殖户第1年的可变动成本为2万元,设可变动成本的年平均增长率为x.
(1)用含x的代数式表示第2年的可变动成本: 万元;
(2)如果该养殖户第3年的成本为6.42万元,求可变动成本的年平均增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A.B.C.D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“和谐正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“和谐正方形”.
(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“和谐正方形”的边长;
(2)如图2,若某函数是反比例函数y=(k>0),它的图象的“和谐正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;
(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“和谐正方形”为ABCD,C、D中的一个点坐标为(3,4),请求出该二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:cm),则该铁球的直径为( )
A.12 cmB.10 cmC.8 cmD.6 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了在校运会中取得更好的成绩,小丁积极训练.在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是米,当铅球运行的水平距离为3米时,达到最大高度的B处.小丁此次投掷的成绩是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是线段OB上的一点(不与点B重合),D,E是半圆上的点且CD与BE交于点F,用①,②DC⊥AB,③FB=FD中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角三角形中,除直角外的5个元素中,已知2个元素(其中至少有1个是边),就可以求出其余的3个未知元素.对于任意三角形,我们需要知道几个元素就可以求出其余的未知元素呢?思考并解答下列问题:
(1)观察图①~图④,根据图中三角形的已知元素,可以求出其余未知元素的序号是____.
(2)如图⑤,在中,已知,,,能否求出BC的长度?如果能,请求出BC的长度;如果不能,请说明理由.(参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图a,AB为⊙O直径,AC为⊙O的为弦,PA为⊙O的切线,∠APC=2∠1.
(1)求证:PC是⊙O的切线.
(2)当∠1=30°,AB=4时,其他条件不变,求图b中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.
(1)求证:CE⊥DE;
(2)若AB=6,求CF·DF的值;
(3)当△BCE与△DFG相似时,的值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com