精英家教网 > 初中数学 > 题目详情
14.衡阳市步步高百货商场准备进一批两种不同型号的衣服.已知购进A种型号衣服10件,B种型号衣服8件,则共需1700元;若购进A种型号衣服9件,B种型号衣服10件,共需1810元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于798元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可以有几种方案?并简述购货方案.

分析 (1)由题意可知:A种型号衣服10件×进价+B种型号衣服8件×进价=1700,A种型号衣服9件×进价+B种型号衣服10件×进价=1810;由此列出方程组解答即可;
(2)根据获利不少于798元,且A型号衣服不多于28件,列出不等式组解答即可.

解答 解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,
则:$\left\{\begin{array}{l}{10x+8y=1700}\\{9x+10y=1810}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=90}\\{y=100}\end{array}\right.$.
答:A种型号的衣服每件90元,B种型号的衣服100元;

(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,
可得:$\left\{\begin{array}{l}{18(2m+4)+30m≥798}\\{2m+4≤28}\end{array}\right.$
解得11≤m≤12,
∵m为正整数,
∴m=11、12,2m+4=26、28.
有两种进货方案:
(1)B型号衣服购买11件,A型号衣服购进26件;
(2)B型号衣服购买12件,A型号衣服购进28件.

点评 此题考查二元一次方程组与一元一次不等式组的实际运用,解决本题的关键是读懂题意,找到符合题意的不等关系与等量关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.已知:如图,菱形ABCD的边长为4,∠A=60°,M是对角线BD的中点,延长BD到点E,连接EC,F是EC的中点
(1)求BD的长;
(2)如果∠E=45°,求MF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图所示,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.
(1)试探究直线AF与直线BE的位置关系是AF⊥BE;
(2)线段AO、BO、GO的长度之间的数量关系是BO=AO+OG;
(3)若OG:ED=4:5,求AE:AD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,四边形ABCD是等腰梯形,BC=2AD=4,过A作AM∥DC,得到第1个三角形,其平行于BC的中位线EF=1;过E作EN∥DC,得到第2个三角形,其平行于BC的中位线GH=$\frac{1}{2}$;过G作GO∥DC,得到第3个三角形,….按此规律作出第n个三角形,则其平行于BC的中位线长等于$\frac{1}{{2}^{n-1}}$.(用正整数n表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若关于x的不等式组$\left\{\begin{array}{l}{3x-2<7}\\{x<a}\end{array}\right.$的解集是x<3,则下列结论正确的是(  )
A.a=3B.a≤3C.a>3D.a≥3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知:矩形ABCD,以对角线AC的中点O为圆心,OA的长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为点K,过点D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.
(1)求证:AE=CK;
(2)若F是EG的中点,且DE=6,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.当x=$\sqrt{3}$+1,y=$\sqrt{3}$-1时,$\frac{{x}^{2}-2xy+{y}^{2}}{{x}^{2}-{y}^{2}}$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图是排球比赛场景的示意图,AB是球网,长度为10米,高AC为2.4米,二传手在距边界C处0.5米的E点传球,球(看成一个点)从点M处沿如图所示的抛物线在网前飞行,点M的高度为1.8米,球在水平方向飞行5米后达到最高3.8米.
(1)以点C为坐标原点,建立直角坐标系,并求出抛物线的解析式;
(2)甲球员在距二传手2米的F处起跳扣快球,其最大扣球高度为3.10米(只考虑在起跳点正上方扣球,不考虑起跳时间等因素),试问甲队员能否扣到球?
(3)若乙队员的最大扣球高度是3.4米,而对方防守队员最大防守高度为3.2米,试问乙队员应在距点C多远的地方起跳,既能扣到球又避免对方拦网?
(参考数据:$\sqrt{5}$=2.24,$\sqrt{30}$=5.48)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,期中“预”的对面是“中”,“正”的对面是“功”,则它的平面展开图可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案