精英家教网 > 初中数学 > 题目详情
6.若$y=\frac{{\sqrt{x-4}+\sqrt{4-x}}}{2}-2$,则(x+y)-2=$\frac{1}{4}$.

分析 根据二次根式有意义的条件列出不等式,求出x的值,代入已知式子求出y的值,根据负整数指数幂的运算法则计算即可.

解答 解:由题意得,x-4≥0,4-x≥0,
解得,x=4,
则y=-2,
∴(x+y)-2=$\frac{1}{4}$,
故答案为:$\frac{1}{4}$.

点评 本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,已知矩形ABCD四个顶点的坐标分别是A(2,$-2\sqrt{2}$),B(5,$-2\sqrt{2}$),C(5,$-\sqrt{2}$),D(2,$-\sqrt{2}$)
(1)四边形的面积是多少?
(2)将矩形ABCD向上平移$\sqrt{2}$个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.|5|+(-$\frac{1}{2}$)-2+$\root{3}{27}$-$\sqrt{(-2)^{2}}$-($\sqrt{7}$-1)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.求下列各式中的x的值.
(x-1)2=$2\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,抛物线y=-x2+mx(m>0且m≠1)与x轴交于原点O和点A,点B的坐标为(1,-1),连结AB,将线段AB绕点A顺时针旋转90°得到线段AC,连结OB、OC.
(1)求点A的横坐标.(用含m的代数式表示).
(2)若m=3,则点C的坐标为(2,2).
(3)当点C与抛物线的顶点重合时,求四边形ABOC的面积.
(4)结合m的取值范围,直接写出∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.附加题:先阅读下面解答过程,然后作答:
形$\sqrt{m±2\sqrt{n}}$的化简,只要我们找到两个数a,b(a>b),使a+b=m,ab=n,则
$\sqrt{m±2\sqrt{n}}=\sqrt{a+b±2\sqrt{ab}}$=$\sqrt{(\sqrt{a})^{2}±2\sqrt{ab}+(\sqrt{b})^{2}}$=$\sqrt{(\sqrt{a}±\sqrt{b})^{2}}$=$\sqrt{a}$±$\sqrt{b}$
例:化简
$\sqrt{7+4\sqrt{3}}$=$\sqrt{7+2\sqrt{12}}$=$\sqrt{4+2\sqrt{4×3}+3}$=$\sqrt{(\sqrt{4})^{2}+2\sqrt{4×3}+(\sqrt{3})^{2}}$=$\sqrt{(\sqrt{4}+\sqrt{3})^{2}}$=2+$\sqrt{3}$
解:用上述例题方法的化简:(1)$\sqrt{13-2\sqrt{42}}$;  (2)$\sqrt{7-\sqrt{40}}$;   (3)$\sqrt{2-\sqrt{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,△ABC中,∠BAC=90°,AC+AB=8,以AC、AB为半径作半圆.记图中阴影部分面积为y,AC为x,则下列y关于x的图象正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,等腰直角三角形ABC中,∠C=90°,A(0,0),B(4,0),点C在x轴上方,把△ABC向上平移1个单位后,得到△A1B1C1,且A1B1分别交AC于点D,交BC于点E.
(1)求D、E的坐标;
(2)求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图:在?ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=27°,求∠C、∠B的度数.

查看答案和解析>>

同步练习册答案