分析 (1)根据折叠的性质求解;
(2)由AD∥BC得到∠1=∠2,由折叠性质得到∠2=∠FEB,则∠1=∠FEB,于是可判断△EBF是等腰三角形;
(3)设BE=x,则DE=x,AE=AD-DE=8-x,在Rt△ABE中,理由勾股定理得到(8-x)2+42=x2,解得x=5,而△EBF是等腰三角形,所以BF=BE=5,然后根据三角形面积公式求解.
解答 解:(1)折叠后,DC的对应线段是 B C′,CF的对应线段是C′F;
(2)△EBF是等腰三角形.理由如下:
∵四边形ABCD为矩形,
∵AD∥BC,
∴∠1=∠2,
∵长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上,
∴∠2=∠FEB,
∴∠1=∠FEB,
∴△EBF是等腰三角形;
(3)设BE=x,则DE=x,
∴AE=AD-DE=8-x,
在Rt△ABE中,(8-x)2+42=x2,解得x=5,
∵△EBF是等腰三角形,
∴BF=BE=5,
∴△EBF的面积=$\frac{1}{2}$×5×4=10.
点评 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了等腰三角形的判定.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{31}{2}$,15 | B. | 15,$\frac{31}{2}$ | C. | 15,15 | D. | $\frac{31}{2}$,$\frac{31}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com