【题目】如图,抛物线过点和点,连结AB交y轴于点C.
(1)求抛物线的函数解析式;
(2)点P在线段AB下方的抛物线上运动,连结AP,BP. 设点P的横坐标为m,△ABP的面积为s.
①求s与m的函数关系式;
②当s取最大值时,抛物线上是否存在点Q,使得S△ACQ=s. 若存在,求点Q的坐标;若不存在,说明理由.
【答案】(1);(2)①;②Q点坐标为或.
【解析】
(1)直接把A、B代入解析式求解即可;
(2)①根据自变量与函数值的对应关系,可得P点坐标,M点坐标,根据线段的和差,可得PM的长,A到PM的距离,B到PM的距离,根据三角形的面积公式,可得答案;
②由①得到点P坐标,根据S△ACQ=s,得到直线AB向上平移3个单位的直线,联立和 即可得解.
(1)把点和点代入得:
,.
解得.
∴..
(2)∵,,
∴.
∵,.
∴
∴,即.
当时,最大值.
(2)当△ABP的面积取最大值时,P点坐标为.
∴.
∵S△ACQ=S△ABP,∴S△AQB=2S△ABP,
∴可使直线AB向上平移3个单位长度,得
联立,解得Q点坐标为或.
科目:初中数学 来源: 题型:
【题目】如图①,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D、E、F、G,∠CGD=42°,将直尺向下平移,使直尺的边缘通过点B,交AC于点H,如图②所示.
(1)∠CBH的大小为 度.
(2)点H、B的读数分别为4、13.4,求BC的长.(结果精确到0.01)
(参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABO的顶点A是反比例函数y=与一次函数y=﹣x﹣(k+1)的图象在第二象限的交点,AB⊥x轴于B,且S△ABO=.
(1)直接写出这两个函数的关系式;
(2)求△AOC的面积;
(3)根据图象直接写出:当x为何值时,反比例函数的值小于一次函数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与x轴交于A、B两点,与轴交于点,连接、.
(1)求抛物线的函数表达式;
(2)抛物线的对称轴与x轴交于点D,连接,点E为第三象限抛物线上的一动点,,直线与抛物线交于点F,设直线的表达式为.
①如图①,直线与抛物线对称轴交于点G,若,求k、b的值;
②如图②,直线与y轴交于点M,与直线交于点H,若,求b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点,,且、满足,的边与轴交于点,且为中点,双曲线经过、两点.
(1)求的值;
(2)点在双曲线上,点在轴上,若以点、、、为顶点的四边形是平行四边形,试求满足要求的所有点、的坐标;
(3)以线段为对角线作正方形(如图,点是边上一动点,是的中点,,交于,当在上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连接给出如下结论:;;;其中正确的结论是______填写序号
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中结论正确的是____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作.
(1)已知点,
①直接写出的值;
②直线与x轴交于点F,当取最小值时,求k的取值范围;
(2)的圆心为 ,半径为1.若,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,函数的图象G经过点,直线与y轴交于点B,与图象G交于点C.
(1)求m的值.
(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W.
①当直线l过点时,直接写出区域W内的整点个数.
②若区域W内的整点不少于4个,结合函数图象,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com